Characterization of Diamondoid Clusters Formed In Helium Nanodroplets

Marina Šekutor,¹ Marija Alešković,¹ Jasna Alić,¹ Florian Küstner,² Roman Messner,² Mirta Rubčić,³ Florian Lackner,² Wolfgang E. Ernst²

¹ Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10 000 Zagreb, Croatia, ² Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria, ³ Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia

Abstract: Diamondoids are versatile building blocks in nanomaterial design, but only recently the field expanded to preparation and study of diamondoid covalent assemblies, *i.e.*, molecules composed of diamondoid cage subunits connected by a heteroatom.¹ Spontaneous self-assembly of diamondoid derivatives is known to be strongly influenced by intermolecular London dispersion interactions. We therefore investigated diamondoid agglomeration in helium nanodroplets (HNDs) as that is a medium suitable for characterizing weakly-bound supramolecular clusters.^{2,3} We confirmed that organization of diamondoid covalent assemblies in HNDs was indeed predominantly governed by dispersion when derivatives of low polarity (hydrocarbons and ethers)² were studied, whereas introduction of more polar functional groups to diamondoid scaffolds³ resulted in a formation of more complex nanostructured supramolecular networks. By combining experimental results with a computational analysis we gained deeper insights into the forces governing self-organization and agglomeration behavior of diamondoids, which has important implications for their use in nanotechnology.

Fig 1. Computed cyclic assembly of 4,9-diamantanedicarboxylic acid molecules formed in HNDs

References:

1. J. Alić, I. Biljan, Z. Štefanić, M. Šekutor, *Nanotechnology* (2022), **33**, 355603; J. Alić, T. Stolar, Z. Štefanić, K. Užarević, M. Šekutor, *ACS Sustainable Chem. Eng.* (2023), **11**, 617–624.

2. J. Alić, R. Messner, F. Lackner, W. E. Ernst, M. Šekutor, *Phys. Chem. Chem. Phys.* (2021), **23**, 21833–21839; J. Alić, R. Messner, M. Alešković, F. Küstner, M. Rubčić, F. Lackner, W. E. Ernst, M. Šekutor, *Phys. Chem. Chem. Phys.* (2023), **25**, 11951–11958.

3. M. Alešković, F. Küstner, R. Messner, F. Lackner, W. E. Ernst, M. Šekutor, *Phys. Chem. Chem. Phys.* (2023), 25, 17869–17876.

The 15th International Conference on Quantum Fluid Clusters Aarhus University, June 23rd – 26th, 2024.