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1. Overview

LCK manifolds generalize Kähler manifolds and are studied in non-Kähler
geometry. Vaisman manifolds are a subclass of LCK manifolds that are
closer to being Kähler. Many non-Vaisman LCK manifolds exist, but few
are easy to compute. Oeljeklaus-Toma (OT) manifolds form a class of
compact non-Kähler manifolds. Some OT manifolds are the only known
examples of compact LCK manifolds that have a solvmanifold structure
(a quotient of a solvable Lie group by a lattice) and a non-Vaisman LCK
structure. Thus, OT manifolds are important examples in LCK ge-

ometry. OT manifolds are a generalization of Inoue surfaces and are
constructed essentially using number theory.

Questions

•Why have no other examples been found?

•Why does number theory play a crucial role in the only known case?

We prove that if a certain class of solvmanifolds admits a left-invariant

non-Vaisman LCK metric, then they must arise from the construc-

tion of OT manifolds.

2. OT manifolds

We omit the definition of OT manifolds here but explain some key points.
The information required to construct OT manifolds is as follows:

•An irreducible polynomial f → Q[x] which has s real roots and 2t com-
plex roots such that s, t ↑ 1.

•Choose t complex roots such that, together with their conjugates, they
form all complex roots.

•Take a subgroup U ↓ O
↔

K of rank s satisfying some conditions, where
K := Q[x]/(f (x)) is a field.

We can define a discrete group action (U ⊋ OK) ⫅̸ (Hs
↔ C

t). We call
its quotient X(K,U) := (Hs

↔ C
t)/(U ⊋ OK) an OT manifold of type

(s, t). The properties of OT manifolds are as follows:

•OT manifolds are compact complex manifolds of dim s + t.

•OT manifolds do not admit any Kähler metric.

•OT manifolds of type (s, 1) admit a non-Vaisman LCK metric.

•OT manifolds are solvmanifolds.

The solvmanifold structure of an OT manifold is described as follows:

Definition (OT-like Lie groups)

Let C = (cij)ij → Matt↔s(C) be a complex matrix such that

Re(c1j) + · · · + Re(ctj) = ↗1/2 (1)

for all 1 ↘ j ↘ s. We define a unimodular solvable Lie group GC =
R

s
⊋ωC (R

s
≃C

t) where the map ωC : Rs
⇐ GL(Rs

≃C
t) is the following:

ωC(t1, . . . , ts) = exp



diag(t1, . . . , ts, (
s∑

j=1

cijtj)
t
i=1)



 .

We call a Lie group OT-like of type (s, t) if it is isomorphic to GC for
some matrix C → Matt↔s(C).
If Re(cij) = ↗1/2t for all i, j, we call GC LCK OT-like.

Note that all OT-like Lie group of type (s, 1) is LCK OT-like.

•For all OT manifolds X(K,U) of type (s, t), there exists a matrix C →

Matt↔s(C) satisfying (1) and a lattice ! ↓ GC such that X(K,U) ⇒
!\GC.

•LCK OT-like Lie groups admit a left-invariant non-Vaisman LCK met-
ric.

As a result, OT manifolds of type (s, 1) admit a non-Vaisman LCK metric.

3. Result I

Main Theorem I

Let GC be an OT-like Lie group of type (s, t). If GC admits a simple lattice,
then GC is constructed from a simple OT manifold of type (s, t).

We call an OT manifold X(K,U) simple if Q(U) = K holds. X(K,U) is
simple if and only if a lattice ! such that X(K,U) ⇒ !\GC is simple. We
prove that any lattice of an LCK OT-like Lie group is simple. An OT
manifold admits an LCK metric if and only if its type is (s, 1). Thus we have

Corollary

Let GC be an LCK OT-like Lie group of type (s, t). If GC admits a lattice,
then t = 1 and GC is constructed from an OT manifold of type (s, 1).

4. Result II

So, what kind of solvable Lie group is an LCK OT-like Lie group? It can
be characterized within the class of meta-abelian Lie groups. The semi-direct
product of two abelian Lie groups is called meta-abelian.

Main Theorem II

Let G = R
m
⊋ω R

n be a meta-abelian Lie group with m = 1 or 2. If G
admits a left-invariant non-Vaisman LCK structure, then it is isomorphic to
an LCK OT-like Lie group of type (s, t), where m = s and n = s + 2t.

What about the case whenm > 2 ? Let g = R
m
⊋dωR

n be the Lie algebra ofG.
If a left-invariant non-Vaisman LCK structure (G, J, g) satisfies g = R

n+JRn,
then G is isomorphic to an LCK OT-like Lie group. Whether this condition
can be removed remains an open question.

5. Strategy of the proof

• To prove Main Theorem I, we use the following lemma proved by using
Mostow’s theorem:

If an OT-like Lie group GC = R
s
⊋ωC (R

s
≃C

t) admits a simple lattice, there
exists P → GL(n,R) and a lattice !1 → R

s such that

P (ωC(x))P
↗1

→ SL(n,Z), for all x → !1,

where n = s + 2t. As a result, we obtain a new lattice ! = !1 ⊋ωC (P
↗1
Z
n)

such that the action !1 ⫅̸ (P↗1
Z
n) is simple.

We set U :=
{
P (ωC(x))P↗1

→ SL(n,Z) | x → !1

}
. The group U ↓ SL(n,Z)

is a free abelian subgroup of rank s. Then we can define a Q-algebra K :=
Q[U ] ↓ Mat(n,Q). Since the elements of K are diagonalized by P , K is
reduced ring. AsK is Artinian and reduced, it is isomorphic to a finite product
of fields K1↔ · · ·↔Kr. We can show that r = 1 and [K : Q] = n by simplicity
of the lattice. Since the characteristic polynomials of A,A↗1

→ U ↓ GL(n,Z)
are monic and integer coe”cients, it follows that U ↓ O

↔

K. By using the general
theory of fields, it is ultimately shown that X(K,U) is an OT manifold, and
there exists a lattice ! such that X(K,U) ⇒ !\GC.

• To prove Main Theorem II, one only needs to carefully classify the structure
using linear algebra. Yet, interestingly, the proof features theCauchy-Schwarz
inequality and the Killing form. The most non-trivial step is diagonalizing
the action dω : Rs

⫅̸ (Rs
≃ C

t). First, this action decomposes into R
s
⫅̸ R

s

and R
s
⫅̸ C

t. The latter action is a sum of a skew-Hermitian action and a
scalar multiplication, with respect to the original metric g. The former action is
self-adjoint with respect to a new metric constructed by the Killing form. The
Killing form is degenerate on a solvable Lie algebra in general, but it becomes
non-degenerate when restricted to a certain subspace. Furthermore, its positive
definiteness is shown using the Cauchy-Schwarz inequality.


