

Towards an Aubin-Yau theorem for transversally Kähler foliations

(Work in progress)

Vlad Marchidanu¹

¹University of Bucharest and Institute of Mathematics of the Romanian Academy

Historical Motivation

Answered in 1978 by S.T. Yau and separately by T. Aubin in 1976, the Aubin-Yau conjecture has been sought after for decades and widely celebrated as the solution of a fully nonlinear PDE of Monge-Ampère type:

Theorem 1 ([6];[1]). Let M be a compact complex manifold such that $c_1(M)$ admits a representative whose associated symmetric tensor is negative-definite. Then there exists a unique Kähler-Einstein metric with negative constant i.e. its Ricci form ρ and its Kähler form ω satisfy $\rho = -\omega$.

Arising from applications, as well as a natural question for consideration, is the more general case of a transversally Kähler foliation.

Definition 1. Let (M, \mathcal{F}) be a foliated manifold. If:

- \mathcal{F} is a Riemannian foliation and g is a bundle-like pseudometric on TM,
- $\exists \omega_0 \in \Omega^2_{\text{bas}}(M, \mathcal{F})$, nondenegerate on νF , and
- $\overline{J} := \overline{\omega_0}^{-1} \circ \overline{g} : \nu \mathcal{F} \to \nu \mathcal{F}$ is an integrable almost complex structure for any local leaf space which happens to be a smooth manifold

then $(M, \mathcal{F}, g, \omega_0)$ is a **transversally Kähler** foliation.

Research motivation: Study of LCK and Vaisman Manifolds

We're interested in studying and classifying LCK manifolds, which is a broad class of complex manifolds.

Definition 2. A complex Riemannian manifold M with real Hermitian form ω is **locally** conformally Kähler (LCK) if $\exists \theta \in \Omega^1(M)$ with $d\theta = 0$ and $d\omega = \omega \wedge \theta$.

Among LCK manifolds, Vaisman manifolds are a particularly well-behaved class; for instance they have:

- a canonical foliation

Reformulation

Let (M, \mathcal{F}) be of transversal Kähler type, $\operatorname{codim} \mathcal{F} = q$. Find ω representing $-c_1(\nu \mathcal{F})$ and positive on $\nu \mathcal{F}$. Using:

Lemma 1 ([2, Proposition 3.5.1]). Let (M, \mathcal{F}) be a foliated transversally Kähler manifold with a fixed transversal holomorphic structure.

Let
$$\omega, \omega' \in \Omega^{1,1}_{\text{bas}}(M, \mathcal{F})$$
 with $[\omega] = [\omega']$ in $H^2_{\text{bas}}(M, \mathcal{F})$.
Then $\exists f \in \mathcal{C}^{\infty}_{\text{bas}}(M, \mathcal{F})$ with $\omega' = \omega + \sqrt{-1}\partial\bar{\partial}f$.

can find a basic f with $\rho^{\omega} = -\omega + \sqrt{-1}\partial\bar{\partial}f$. Using:

Lemma 2 (Work in progress). Let (M, \mathcal{F}) be a foliated transversally Kähler manifold with fixed transversal holomorphic structure and suppose for some basic f we have $\partial \bar{\partial} f = 0$. Then $f = \text{const.} \blacksquare$

arrive at an equation in basic functions $u \in \mathcal{C}^{\infty}_{\text{bas}}(M, \mathcal{F})$:

$$\log \frac{(\omega + \sqrt{-1}\partial \bar{\partial} u)^q}{\omega^q} - u = f \tag{1}$$

Passage to a simple foliation and adaptation

For a foliation (M, \mathcal{F}) of $\operatorname{codim} \mathcal{F} = q$, denote $\operatorname{Fr}(\nu F)$ the principal $GL(q, \mathbb{R})$ bundle of frames in $\nu \mathcal{F}$, and by \mathcal{F}_T the lifted foliation on $Fr(\nu \mathcal{F})$. The starting point is:

Proposition 1. Let

- (M, \mathcal{F}) be a foliated manifold with $codim(\mathcal{F}) = q$,
- G be a Lie subgroup of $GL(\mathbb{R},q)$,
- *E* be a transverse *G*-structure on $Fr(\nu \mathcal{F})$

Then $\mathcal{C}^{\infty}_{has}(M,\mathcal{F}) \simeq \mathcal{C}^{\infty}(E,\mathcal{F}_T)^G$.

Definition 4. A smooth foliation is called transversally parallelisable if it admits a

• an associated projective orbifold

Definition 3. An LCK manifold (M, ω, θ) is **Vaisman** if $\nabla \theta = 0$.

A rich source of examples for transversally Kähler foliations are Vaisman manifolds with their canonical foliations.

Theorem 2 ([4]). Let (M, ω, θ) be a Vaisman manifold. Set $\Sigma := \langle \theta^{\sharp}, J\theta^{\sharp} \rangle$ (the canonical foliation). Then there exists $\omega_0 \in \Omega^2_{bas}(M, \Sigma)$ with respect to which (M, Σ) is a transversally Kähler foliation. More precisely, with

 $\omega_0 := d^c \theta$

it follows that

$$\omega = \omega_0 + \theta \wedge \theta^{\alpha}$$

and ω_0 is a semi-positive, closed (1,1)-form, such that ker $\omega_0 = \Sigma$.

Expected Main Result

Theorem 3 (Work in progress). Let (M, \mathcal{F}) be a foliation of transversal Kähler type, with a fixed transversally holomorphic structure J.

Suppose $c_1(\nu \mathcal{F})$ can be represented by a basic form which is transversally negative (w.r.t. J).

Then there exists a unique transversally Kähler, transversally Einstein metric with Einstein constant -1, i.e. for the transversally Kähler metric ω_0 we have $\omega_0 = -\rho$.

Here, for $(M, \mathcal{F}, \omega_0, \overline{g} \in \text{Sym}^2(\nu \mathcal{F}))$ a transversally Kähler foliation, we consider ρ the basic 2-form which on νF is the skew-symmetric tensor obtained from the Ricci tensor of the Levi-Civita connection of \overline{q} and J.

Main Ideas

- Reformulation as a differential equation in basic functions.
- Passage from basic functions to functions on the global leaf space of a basic foliation.
- Adapting existence and uniqueness arguments.

transversal $\{1\}$ -structure.

Theorem 4. [3, Section 3.3] Let (M, \mathcal{F}) be a Riemannian foliation with transverse Levi-Civita connection ω on a transverse O(q)-structure E. Then $(E, \mathcal{F}_T|_E)$ is transversally parallelisable.

Theorem 5. [3, Theorem 4.2] Let (M, \mathcal{F}) be a transversally parallelisable foliation. Then the basic associated foliation, \mathcal{F}_b , is a simple foliation.

Combining 1, 4 and 5, we can see $\mathcal{C}^{\infty}_{\text{bas}}(M, \mathcal{F})$ as a subspace of $\mathcal{C}^{\infty}(E/\mathcal{F}_{T,b})^{O(q)}$, the latter consisting of smooth functions on a global compact manifold.

Thus, we can treat (1) as a PDE in $u \in \mathcal{C}^{\infty}(W)^{O(q)}$ where W is a compact smooth manifold.

Uniqueness follows via the negative-semidefiniteness of $\sqrt{-1}\partial \bar{\partial} u(\cdot, \bar{J} \cdot)$.

Work on existence follows the Schauder continutive method: modifying (1) to a family of equations $(*)_{t\in[0,1]}$ with RHS tf instead of f and taking I := $\{t \in [0,1]$: $(*)_t$ has a solution }, we show that I is open and closed (work in progress).

Application to Vaisman Manifolds

As a consequence of the Main Result and

Theorem 6. [5] Let (M, ω, θ) be an LCK manifold defined by the local system (L, ∇) . Let ${}^{C}\nabla$ be the Chern connection of the holomorphic structure given by $\nabla^{0,1}$. Then the curvature of ${}^{C}\nabla$ is $R^{C}\nabla = -2\sqrt{-1}d^{c}\theta$

we also obtain:

Theorem 7. Let M be a Vaisman manifold with Lee form θ . Let L be the weight bundle of M.

Suppose $K_M = L^{\otimes \alpha}$ for $\alpha \in \mathbb{R}^{<0}$.

Then for $\omega_0 := d^c \theta$, there exists a Vaisman metric ω such that $\rho^{\omega} = \omega_0$ on $\nu \Sigma$.

References

- [1] T. Aubin, Équations du type Monge-Ampère sur les variétés Riemanniennes compactes, C.R. Acad. Sci. Paris 283 (1976), 119-121.
- [2] A. El Kacimi-Alaoui, Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications, Compositio Math. 73 (1990), no. 1, 57-106.
- [3] P. Molino, Riemannian foliations, Birkhäuser, 1988.
- [4] L. Ornea, M. Verbitsky, Principles of Locally Conformally Kähler Geometry, Progress in Mathematics, Birkhäuser Cham, 2024.
- [5] M. Verbitsky, Theorems on the vanishing of cohomology for locally conformally hyper-Khler manifolds, Proc. Steklov Inst. Math. no. 3 (246), 54-78 (2004).
- [6] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampére equation, Com. Pure and Appl. Math 31 (1978), 339-411.