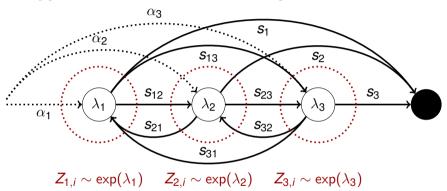
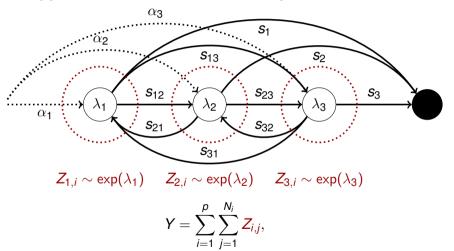

Clara Brimnes Gardner

Phase-type Representations for Exponential Distributions

Markov Jump Processes

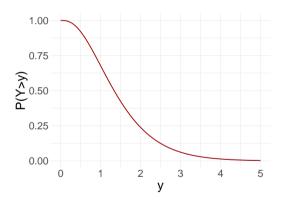


Markov Jump Processes

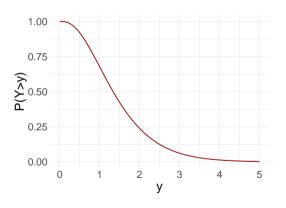


$$(\boldsymbol{\alpha}, \mathbf{S}) = \begin{pmatrix} \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{pmatrix}, \begin{pmatrix} -\lambda_1 & s_{12} & s_{13} \\ s_{21} & -\lambda_2 & s_{23} \\ s_{31} & s_{32} & -\lambda_3 \end{pmatrix} \text{ and } \mathbf{s} = \begin{pmatrix} s_1 \\ s_2 \\ s_3 \end{pmatrix} = -\mathbf{Se}.$$

Phase-type Distributions and the Exponential Distribution



Phase-type Distributions and the Exponential Distribution


Motivation

Survival functions

Motivation

Survival functions

Exponential Distribution:

$$\mathbb{P}(Y > y) = \exp(-\lambda y),$$

Phase-type Distribution

$$\mathbb{P}\left(Y>y
ight)=lpha\exp\left(\mathbf{S}y
ight)\mathbf{e}.$$

When do we have

$$\exp(-\lambda y) = \alpha \exp(\mathbf{S}y)\mathbf{e}$$
?

The Jordan Normal Form

The Jordan Normal Form

Figure: Picture from Wikipedia

The Jordan Normal Form: General Expression

$$\mathbf{S} = \mathbf{T}\mathbf{J}\mathbf{T}^{-1} = \begin{pmatrix} \mathbf{T}_1 & \mathbf{T}_2 & \cdots & \mathbf{T}_3 \end{pmatrix} \begin{pmatrix} \mathbf{J}_1 & \mathbf{U} & \cdots & \mathbf{U} \\ \mathbf{0} & \mathbf{J}_2 & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{J}_g \end{pmatrix} \begin{pmatrix} \mathbf{U}_1 \\ \mathbf{U}_2 \\ \vdots \\ \mathbf{U}_g \end{pmatrix}$$

with

$$\mathbf{T}_i = \begin{pmatrix} \mathbf{r}_{i,1} & \mathbf{r}_{i,2} & \cdots & \mathbf{r}_{i,b_i} \end{pmatrix}, \ \mathbf{J}_i = \begin{pmatrix} -\lambda_i & 1 & \cdots & 0 \\ 0 & -\lambda_i & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -\lambda_i \end{pmatrix}, \ \mathbf{U}_i = \begin{pmatrix} \mathbf{I}_{i,b_i} \\ \mathbf{I}_{i,b_i-1} \\ \vdots \\ \mathbf{I}_{i,1} \end{pmatrix}$$

The Jordan Normal Form

Example

$$\boldsymbol{S} = \begin{pmatrix} -4 & 1 & 2 & 0 \\ 0 & -2 & 0 & 1 \\ 0 & 0 & -3 & 3 \\ 0 & 0 & 0 & -3 \end{pmatrix},$$

The eigenvalues are $-\lambda_1 = -2$, $-\lambda_2 = -3$ and $-\lambda_3 = -4$.

Example

$$\mathbf{S} = \begin{pmatrix} -4 & 1 & 2 & 0 \\ 0 & -2 & 0 & 1 \\ 0 & 0 & -3 & 3 \\ 0 & 0 & 0 & -3 \end{pmatrix},$$

The eigenvalues are $-\lambda_1 = -2$, $-\lambda_2 = -3$ and $-\lambda_3 = -4$. We can find three right eigenvectors: one for each eigenvalue

$$\begin{aligned} & \textbf{S}\textbf{r}_1 = -\lambda_1\textbf{r}_1 \Rightarrow \textbf{r}_1 = \begin{pmatrix} 1/2 & 1 & 0 & 0 \end{pmatrix}', \\ & \textbf{S}\textbf{r}_2 = -\lambda_2\textbf{r}_2 \Rightarrow \textbf{r}_2 = \begin{pmatrix} 2 & 0 & 1 & 0 \end{pmatrix}', \\ & \textbf{S}\textbf{r}_3 = -\lambda_3\textbf{r}_3 \Rightarrow \textbf{r}_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}'. \end{aligned}$$

The Jordan Normal Form: Example

We find a generalized eigenvector of order k = 2

$$\mathbf{S} \cdot \mathbf{r}_{2,2} = -\lambda_2 \cdot \mathbf{r}_{2,2} + \mathbf{r}_2 \Rightarrow \mathbf{r}_{2,2} = \begin{pmatrix} -7/3 & -1/3 & 0 & 1/3 \end{pmatrix}$$

The Jordan Normal Form: Example

We find a generalized eigenvector of order k = 2

$$\mathbf{S} \cdot \mathbf{r}_{2,2} = -\lambda_2 \cdot \mathbf{r}_{2,2} + \mathbf{r}_2 \Rightarrow \mathbf{r}_{2,2} = \begin{pmatrix} -7/3 & -1/3 & 0 & 1/3 \end{pmatrix}$$

Then we can write S as

$$\mathbf{S} = \mathbf{T}\mathbf{J}\mathbf{T}^{-1} = \begin{pmatrix} \mathbf{r}_{1,1} & \mathbf{r}_{2,1} & \mathbf{r}_{2,2} & \mathbf{r}_{3,1} \end{pmatrix} \begin{pmatrix} -\lambda_1 & 0 & 0 & 0 \\ 0 & -\lambda_2 & 1 & 0 \\ 0 & 0 & -\lambda_2 & 0 \\ 0 & 0 & 0 & -\lambda_3 \end{pmatrix} \begin{pmatrix} \mathbf{I}_{1,1} \\ \mathbf{I}_{2,2} \\ \mathbf{I}_{2,1} \\ \mathbf{I}_{3,1} \end{pmatrix}$$

Jordan block of order 2

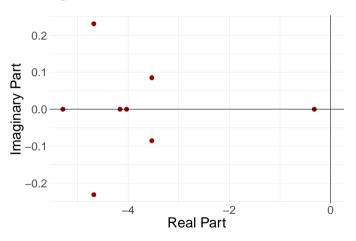
The Jordan Normal Form: Compact Notation

$$\mathbf{S} = \mathbf{T}\mathbf{J}\mathbf{T}^{-1} = \mathbf{T}\left(\sum_{i=1}^{g}\left((-\lambda_i)\mathbf{E}_i + \mathbf{N}_i\right)\right)\mathbf{T}^{-1},$$

From previous example

$$\mathbf{E}_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \ \mathbf{N}_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The Jordan Normal Form and the Matrix Exponential


$$\exp(\mathbf{S}y) = \mathbf{T} \exp(\mathbf{J}y) \mathbf{T}^{-1}$$

$$= \sum_{j=1}^{g} \sum_{k=1}^{B_j} \mathbf{M}_{j,k} \frac{y^{k-1}}{(k-1)!} \exp(-\lambda_i y),$$

with

$$\mathbf{M}_{j,k} = \mathbf{T}\left(\sum_{i\in\mathcal{A}_j}\mathbf{E}_i\mathbf{N}_i^{k-1}\mathbf{E}_i\right)\mathbf{T}^{-1}.$$

A look at the Eigenvalues

The Survival Function

$$\mathbb{P}(Y > y) = = \alpha \exp(\mathbf{S}y) \mathbf{e} = \alpha \sum_{i=1}^{g} \sum_{k=1}^{B_i} \mathbf{M}_{i,k} \frac{y^{k-1}}{(k-1)!} \exp(-\lambda_i y) \mathbf{e}$$

The Survival Function

$$\mathbb{P}(Y > y) = = \alpha \exp(\mathbf{S}y) \mathbf{e} = \alpha \sum_{i=1}^{g} \sum_{k=1}^{B_i} \mathbf{M}_{i,k} \frac{y^{k-1}}{(k-1)!} \exp(-\lambda_i y) \mathbf{e}$$

$$= c_{1,B_1} \frac{y^{k-1}}{(k-1)!} \exp(-\lambda_1 y) + \sum_{k=1}^{B_1-1} c_{1,k} \frac{y^{k-1}}{(k-1)!} \exp(-\lambda_1 y) + \sum_{i=2}^{g} \sum_{k=1}^{B_i} c_{i,k} \frac{y^{k-1}}{(k-1)!} \exp(-\lambda_i y)$$

with

$$c_{i,k} = lpha \mathbf{M}_{i,k} \mathbf{e} = lpha \mathbf{T} \left(\sum_{j \in A_i} \mathbf{E}_j \mathbf{N}_j^{k-1} \mathbf{E}_j
ight) \mathbf{T}^{-1} \mathbf{e}.$$

Theorem and Proof

Paper from Bean and Green

Mathematical and Computer Modelling 31 (2000) 31-46

MATHEMATICAL AND COMPUTER MODELLING

www.elsevier.nl/locate/mcm

When Is a MAP Poisson?

N. G. BEAN AND D. A. GREEN
Department of Applied Mathematics, University of Adelaide
Adelaide, Australia 5005
nbean@maths.adelaide.edu.au
dgreen@maths.adelaide.edu.au

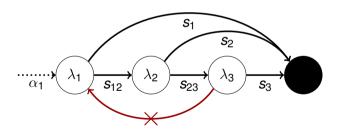
Abstract—The departure process of a queue is important in the analysis of networks of queues, as it may be the arrival process to another queue in the network. A simple description of the departure process could enable a tractable analysis of a network, saving costly simulation or avoiding the errors of approximation techniques.

In a recent paper, Olivier and Wahrand [1] conjectured that the departure process of a MAP/PHJ, queue is not a MAP unless the queue is a stationary M/M/1 queue. This conjecture was prompted by their claim that the departure process of an MMPP/M/1 queue is not a MAP unless the queue is a stationary M/M/1 queue. We note that their proof has an algebraic error, see [2], which leaves the above question of whether the denorture process of an MMPP/PM/1 queue is a MAP \approx still one of the proof of

There is also a more fundamental problem with Olivier and Walrand's proof. In order to identify, attaining M/M [1] queues, it is essential to be able determine from its generator when a stationary M/M is a Poisson process. This is not discussed in [1], nor does it appear to have been discussed selewhere in the literature. This deficiency is remedied using ideas from nonlinear filtering theory, to give a characterisation as to when a stationary MAP is a Poisson process. © 2000 Elsevier Science Ltd. All rights reserved.

Theorem and Proof

Irreducible Generator Matrices


Definition (Irreducible Generators)

A generator matrix, **S** is said to be irreducible if all states communicate.

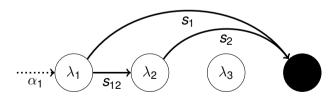
Irreducible Generator Matrices

Definition (Irreducible Generators)

A generator matrix, **S** is said to be irreducible if all states communicate.

Theorem and Proof

Irreducible Representations


Definition (Irreducible Representations)

A phase-type representation, (α, \mathbf{S}) , is said to be irreducible if there is a positive probability of visiting any of the transient states.

Irreducible Representations

Definition (Irreducible Representations)

A phase-type representation, (α, \mathbf{S}) , is said to be irreducible if there is a positive probability of visiting any of the transient states.

The Transition Probability Matrix

The transition probabilities

$$\mathbb{P}(X_{y+t}=j\mid X_t=i)=\rho_{ij}(y),\quad t,y>0,$$

are collected in the transition probability matrix

$$\{p_{ij}(y)\}=P(y)=\exp(\mathbf{S}y).$$

Using the Jordan normal form we obtain:

$$\exp(\mathbf{S}y) = \sum_{i=1}^{g} \sum_{k=1}^{B_i} \mathbf{M}_{i,k} \frac{y^{k-1}}{(k-1)!} \exp(-\lambda_i y)$$

Probabilistic Argument: Non-negativity

$$\exp(\mathbf{S}y) = M_{1,B_1} \frac{y^{k-1}}{(k-1)!} \exp(-\lambda_1 y) + \sum_{k=1}^{B_1-1} M_{1,k} \frac{y^{k-1}}{(k-1)!} \exp(-\lambda_1 y) + \sum_{i=2}^{g} \sum_{k=1}^{B_i} M_{i,k} \frac{y^{k-1}}{(k-1)!} \exp(-\lambda_i y)$$

Probabilistic Argument: Non-negativity

$$\exp(\mathbf{S}y) = M_{1,B_1} \frac{y^{k-1}}{(k-1)!} \exp(-\lambda_1 y) + \sum_{k=1}^{B_1-1} M_{1,k} \frac{y^{k-1}}{(k-1)!} \exp(-\lambda_1 y) + \sum_{i=2}^{g} \sum_{k=1}^{B_i} M_{i,k} \frac{y^{k-1}}{(k-1)!} \exp(-\lambda_i y)$$

Conclusion: Let $\{m_{1,B_1}^{l,k}\}$ be the elements of M_{1,B_1} . Then

$$m_{1,B_1}^{l,k}\geq 0.$$

Linear Algebra Argument: Positivity

The matrix M_{1,B_1} can be calculated as

$$M_{1,B_1} = \mathbf{T} \left(\sum_{j \in A_i} \mathbf{E}_j \mathbf{N}_j^{k-1} \mathbf{E}_j \right) \mathbf{T}^{-1}$$

$$= \mathbf{r}_{i,1} \mathbf{I}_{i,1}.$$

But $\mathbf{r}_{i,1} \neq \mathbf{0}$ and $\mathbf{I}_{i,1} \neq \mathbf{0}$.

Linear Algebra Argument: Positivity

The matrix M_{1,B_1} can be calculated as

$$M_{1,B_1} = \mathbf{T} \left(\sum_{j \in A_j} \mathbf{E}_j \mathbf{N}_j^{k-1} \mathbf{E}_j \right) \mathbf{T}^{-1}$$

$$= \mathbf{r}_{i,1} \mathbf{I}_{i,1}.$$

But ${\bf r}_{i,1} \neq {\bf 0}$ and ${\bf I}_{i,1} \neq {\bf 0}$.

Conclusion: M_{1,B_1} has at least one positive element.

What About the Survival Function?

$$\mathbb{P}(Y > t + y) = \alpha \exp(\mathbf{S}(t + y)) \mathbf{e}$$

$$= \alpha \exp(\mathbf{S}t) \exp(\mathbf{S}(y)) \mathbf{e}$$

$$= \mathbf{q}(t) \exp(\mathbf{S}y) \mathbf{e},$$

where $\mathbf{q}(t) = \alpha \exp(\mathbf{S}t)$.

What About the Survival Function?

$$\mathbb{P}(Y > t + y) = \alpha \exp(\mathbf{S}(t + y)) \mathbf{e}$$

$$= \alpha \exp(\mathbf{S}t) \exp(\mathbf{S}(y)) \mathbf{e}$$

$$= \mathbf{q}(t) \exp(\mathbf{S}y) \mathbf{e},$$

where $\mathbf{q}(t) = \alpha \exp(\mathbf{S}t)$.

If (α, \mathbf{S}) is an irreducible representation, then $\mathbf{q}(t) > 0$.

Survival Function II

$$\mathbb{P}(y > t + y) = \mathbf{q}(t) \exp(\mathbf{S}y)\mathbf{e}
= \mathbf{q}(t)M_{1,B_{1}}\mathbf{e} \frac{y^{k-1}}{(k-1)!} \exp(-\lambda_{1}y) +
\sum_{k=1}^{B_{1}-1} \mathbf{q}(t)M_{1,k}\mathbf{e} \frac{y^{k-1}}{(k-1)!} \exp(-\lambda_{1}y) +
\sum_{i=2}^{g} \sum_{k=1}^{B_{i}} \mathbf{q}(t)M_{i,k}\mathbf{e} \frac{y^{k-1}}{(k-1)!} \exp(-\lambda_{i}y)$$

Theorem

Theorem (Exponential Phase-type Representations)

Let $Y \sim PH(\alpha, \mathbf{S})$ such that the representation is irreducible. Y is exponentially distributed if and only if $B_1 = 1$ and

$$c_{j,k} = lpha \mathsf{T} \left(\sum_{i \in A_j} \mathsf{E}_i \mathsf{N}_i^{
u-1} \mathsf{E}_i
ight) \mathsf{T}^{-1} \mathsf{e} = 0.$$

for
$$\{j, k\} \in \{2, \dots, g\} \times \{1, \dots, B_j\}$$
.

Theorem: Distinct Eigenvalues

Theorem

Let $Y \sim PH(\alpha, \mathbf{S})$ such that the representation is irreducible, and each Jordan block has a distinct eigenvalue. Y is exponentially distributed if and only if $B_1 = 1$ and

$$\alpha \mathbf{r}_{j,\nu} = 0 \text{ or } \mathbf{I}_{j,B_j+1-\nu} \mathbf{e} = 0, \tag{1}$$

for all $\{j, \nu\} \in \{2, 3, \dots, g\} \times \{1, 2, \dots, B_j\}$.

Example

Example: three distinct eigenvalues $-\lambda_1$, $-\lambda_2$ and $-\lambda_3$ each with algebraic and geometric multiplicity:

$$\mathbb{P}(Y > y) = \alpha \exp(\mathbf{S}y) \mathbf{e}$$

$$= \alpha \mathbf{r}_1 \mathbf{l}_1 \mathbf{e} \exp(-\lambda_1 y) + \alpha \mathbf{r}_2 \mathbf{l}_2 \mathbf{e} \exp(-\lambda_2 y) + \alpha \mathbf{r}_3 \mathbf{l}_3 \mathbf{e} \exp(-\lambda_3 y)$$

For *Y* to be exponentially distributed we require:

$$egin{aligned} & lpha \mathbf{r}_2 = 0 \ \mbox{or} \ \mathbf{l}_2 \mathbf{e} = 0, \ & lpha \mathbf{r}_3 = 0 \ \mbox{or} \ \mathbf{l}_3 \mathbf{e} = 0. \end{aligned}$$

PH-simplicity

Definition (O'Cinneide)

Let PH(S) be the set of all phase-type distributions with a representation of the form (α, S) . The generator S is said to be PH-simple if each distribution in PH(S) has a unique representation of the form (α, S) .

Theorem (O'Cinneide)

A PH-generator **S** is PH-simple if and only if it has no left eigenvector orthogonal to **e**.

Comparison

Theorem

Let $Y \sim PH(\alpha, \mathbf{S})$ such that the representation is irreducible, and each Jordan block has a distinct eigenvalue. Y is exponentially distributed if and only if $B_1 = 1$ and

$$\alpha \mathbf{r}_{j,\nu} = 0 \text{ or } \mathbf{I}_{j,B_j+1-\nu} \mathbf{e} = 0, \tag{2}$$

for all
$$\{j, \nu\} \in \{2, 3, \dots, g\} \times \{1, 2, \dots, B_j\}$$
.

If **S** is simple, then $\mathbf{I}_{i,1}\mathbf{e} \neq 0$. This implies that Y can only be exponentially distributed with $\alpha \mathbf{r}_i = 0$. This happens if α is a left eigenvector.