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Equidistribution
Let M be a topological space and µ a (Borel) probability measure
on M. Let µk be a sequence of (Borel) probability measures on M.

Definition
The sequence {µk} equidistributes on M w.r.t. µ if

lim
k→∞

∫
M

f (x) dµk(x) =
∫

M
f (x) dµ(x)

for all f ∈ Cb(M).

Example
Let {xn} be a sequence in M and let µk denote the probability
measure

µk(B) := 1
k

k∑
n=1

δxn(B) = 1
k # {1 ≤ n ≤ k : xn ∈ B} ,

where δxn is the point mass at the point xn ∈ M.

Peter Humphries Quantitative Equidistribution on Hyperbolic Surfaces



Example: Kronecker–Weyl Equidistribution

Example
Let α ∈ R \ Q be irrational. Let M = T = R/Z and let

µk(B) := 1
k

k∑
n=1

δ{αn}(B) = 1
k # {1 ≤ n ≤ k : αn (mod 1) ∈ B} .

Then {µk} equidistributes on M w.r.t. the Lebesgue measure.
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Portmanteau Theorem

Theorem
Let (M, d) be a metric space. The following are equivalent:

{µk} equidistributes on M w.r.t. µ;

lim
k→∞

∫
M

F (x) dµk(x) =
∫

M
F (x) dµ(x) for every bounded

Lipschitz function F : M → R (i.e. supx ,y∈M
x ̸=y

|F (x)−F (y)|
d(x ,y) < ∞);

limk→∞ µk(B) = µ(B) for every (Borel) µ-continuity set B
(i.e. µ(∂B) = 0).
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Weyl Equidistribution Criterion

Theorem
Let F be a subset of Cb(M) s.t. the set of finite linear
combinations of elements of F is dense in Cb(M). Then {µk}
equidistributes on M w.r.t. µ iff

lim
k→∞

∫
M

f (x) dµk(x) =
∫

M
f (x) dµ(x)

for every f ∈ F .

Example
Let M = R/Z and F = {e2πimx : m ∈ Z}. By the
Stone–Weierstraß theorem, the set of finite linear combinations of
elements of F is dense in Cb(M).
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Quantitative Equidistribution: Discrepancy
Equidistribution is a qualitative statement.
To make it quantitative, one must choose some method to
quantify the rate of equidistribution.

Definition
Let B be a collection of sets. The B-discrepancy between
probability measures ν1, ν2 is

DB(ν1, ν2) := sup
B∈B

|ν1(B) − ν2(B)|.

If B generates the Borel sets on M, then limk→∞ DB(µk , µ) = 0
implies that {µk} equidistributes on M w.r.t. µ.

Example
If M is Euclidean, one can take B to be all boxes.
If M is a vector space, one can take B to be all convex sets.
If M is a metric space, one can take B to be all balls.
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Quantitative Equidistribution: Discrepancy
Goal
If {µk} equidistributes on M w.r.t. µ, give upper bounds for
DB(µk , µ) as k → ∞ for a given collection of sets B.

Theorem (Erdős–Turán Inequality)
Take B to be all intervals I in T = R/Z, so that DB = Dbox. Then
for any T ≥ 1,

Dbox(µk , µ) ≪ 1
T

+
∑

1≤|m|≤T

1
|m|

∣∣∣∣∣
∫
R/Z

e−2πimx dµk(x) −
∫
R/Z

e−2πimx dµ(x)
∣∣∣∣∣ .

Note
∫
R/Z e−2πimx dµ(x) = 0 for all m ∈ Z \ {0} if µ is Lebesgue.

In practise, the parameter T is chosen to minimise the RHS;
enlarging T decreases the size of the first term but increases the
length of the sum.
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Quantitative Equidistribution: Shrinking Target Problems
Another quantification of equidistribution is to allow the sets B to
shrink as k → ∞.
Definition
Let B be a collection of (Borel µ-continuity) sets. Let {Bk} be a
sequence in B such that µ(Bk) > 0 and µ(Bk) → 0 as k → ∞. We
say that {µk} equidistributes on the shrinking sets Bk w.r.t. µ if

lim
k→∞

µk(Bk)
µ(Bk) = 1.

Example
If M is Euclidean, one can take B to be all cubes and {Bk} to
be a sequence of rescaled cubes whose side lengths converge
to 0.
If M is a metric space, one can take B to be all balls and {Bk}
to be a sequence of balls Brk (x) with x fixed and rk → 0.
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Quantitative Equidistribution: Wasserstein Distance
These quantifications of equidistribution depend on choices of sets.

Question
Are there more intrinsic quantifications of the rate of
equidistribution?

Definition
Let (M, d) be a metric space and let ν1, ν2 be probability measures
on M. The 1-Wasserstein distance between ν1 and ν2 is

W1(ν1, ν2) := sup
F∈Lip1(M)

∣∣∣∣∫
M

F (x) dν1(x) −
∫

M
F (x) dν2(x)

∣∣∣∣ ,
where Lip1(M) denotes the space of Lipschitz functions
F : M → R for which supx ,y∈M

x ̸=y

|F (x)−F (y)|
d(x ,y) ≤ 1.

Note that F need not be bounded (unless, say, M is compact).
In general, W1(ν1, ν2) need not be finite.
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Quantitative Equidistribution: Wasserstein Distance

Definition
Let (M, d) be a metric space and let ν1, ν2 be (Borel) probability
measures on M. For p ∈ [1, ∞), the p-Wasserstein distance
between ν1 and ν2 is

Wp(ν1, ν2) := inf
π∈Π(ν1,ν2)

∫
M

d(x , y)p dπ(x , y),

where Π(ν1, ν2) ∋ π denotes the set of couplings of ν1 and ν2:
joint probability measures on M × M whose marginals are ν1 and
ν2, so that π(B × M) = ν1(B) and π(M × B) = ν2(B) for every
Borel set B ⊆ M.

A necessary and sufficient condition for this to be finite is that∫
M d(x , y)p dν1(x),

∫
M d(x , y)p dν2(x) < ∞ for some y ∈ M.

The p-Wasserstein distances arise in the theory of optimal
transport. They are also commonly used in probability theory as a
distance function on probability measures.
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Quantitative Equidistribution: Wasserstein Distance

Theorem (Kantorovich–Rubinstein Duality)
These two definitions of the 1-Wasserstein distance agree:

inf
π∈Π(ν1,ν2)

∫
M

d(x , y) dπ(x , y)

= sup
F∈Lip1(M)

∣∣∣∣∫
M

F (x) dν1(x) −
∫

M
F (x) dν2(x)

∣∣∣∣ .
By the Portmanteau theorem, limk→∞ W1(µk , µ) = 0 implies that
{µk} equidistributes on M w.r.t. µ.
The converse holds if

∫
M d(x , y) dµk(x) and

∫
M d(x , y) dµ(x) are

finite for some y ∈ M.

Question
How can one bound W1(ν1, ν2)?
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Inequalities for the Wasserstein Distance
There is an analogue of the Erdős–Turán inequality for the
1-Wasserstein distance on Tn = (R/Z)n.

Theorem (Bobkov–Ledoux, Borda)
Let ν1, ν2 be probability measures on Tn. Then for any T ≥ 1,

W1(ν1, ν2) ≪
√

n
T

+

 ∑
1≤∥m∥∞≤T

1
∥m∥2

2

∣∣∣∣∫
Tn

e−2πim·x dν1(x) −
∫
Tn

e−2πim·x dν2(x)
∣∣∣∣2
1/2

.

Recently used by Kowalski–Untrau for some problems in number
theory involving exponential sums over finite fields.

Goal
Prove an analogous inequality on finite volume hyperbolic surfaces
Γ\H and apply this to arithmetic equidistribution problems.
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Inequalities for the Wasserstein Distance

Theorem (H. (2025+))
Let Γ be a cocompact lattice in H. Let ν1, ν2 be probability
measures on Γ\H. Then for any T ≥ 1,

W1(ν1, ν2) ≪ 1
T

+

∑
f ∈B

e−
t2
f

T2

1
4 + t2

f

∣∣∣∣∣
∫

Γ\H
f (z) dν1(z) −

∫
Γ\H

f (z) dν2(z)
∣∣∣∣∣
2


1/2

.
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Inequalities for the Wasserstein Distance
Observations:

Distance function on Γ\H is ρΓ(z , w) := minγ∈Γ ρ(z , γw) with
ρ(z , w) := 2 arsinh |z−w |

2
√

ℑ(z)ℑ(w)
;

e−2πim·x replaced by f ∈ B, basis of nonconstant Maaß forms
(Laplacian eigenfunctions) on Γ\H, L2-normalised w.r.t.
SL2(R)-invariant probability measure µ;
∥m∥2

2 replaced by Laplacian eigenvalue 1
4 + t2

f ;
Sharp cutoff 1∥m∥∞≤T replaced by rapidly decaying weight

e−
t2
f

T2 .
Similar inequality holds for cofinite but noncocompact lattices
Γ:

Also a continuous contribution from Eisenstein series at each
cusp;
Since Γ\H is noncompact, need to assume a natural
non-escape of mass condition on ν1 and ν2 for W1(ν1, ν2) to
be finite.
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Inequalities for the Wasserstein Distance
Sketch of proof 1/4.
Want to bound

sup
F∈Lip1(Γ\H)

∣∣∣∣∣
∫

Γ\H
F (z) dν1(z) −

∫
Γ\H

F (z) dν2(z)
∣∣∣∣∣ .

By a smoothing argument, suffices to assume F is smooth.
Key trick: convolve with a point-pair invariant kernel

K (z , w) :=
∑
γ∈Γ

k(u(z , w)), u(z , w) = sinh2 ρ(z , w)
2 = |z − w |2

4ℑ(z)ℑ(w) .

Choose k : (0, ∞) → [0, ∞) dependent on T such that

4π

∫ ∞

0
k(u) du = 1;∫ ∞

0
k(u) arsinh

√
u du ≪ 1

T ;

h(t) := 4π

∫ ∞

0
k(u)P− 1

2 +it(1 + 2u) du = e−
t2+ 1

4
2T2 .
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Inequalities for the Wasserstein Distance
Sketch of proof 2/4.
Assumptions on k ensure that

∫
Γ\H K (z , w) dµ(w) = 1

independently of z . By the triangle inequality,∣∣∣∣∣
∫

Γ\H
F (z) dν1(z) −

∫
Γ\H

F (z) dν2(z)
∣∣∣∣∣

≤
2∑

j=1

∣∣∣∣∣
∫

Γ\H

∫
Γ\H

(F (z) − F (w))K (z , w) dµ(w) dνj(z)
∣∣∣∣∣

+
∣∣∣∣∣
∫

Γ\H

∫
Γ\H

F (w)K (z , w) dµ(w) dν1(z)

−
∫

Γ\H

∫
Γ\H

F (w)K (z , w) dµ(w) dν2(z)
∣∣∣∣∣ .

By Lipschitz assumption together with unfolding, first two terms
are at most 16π

∫∞
0 k(u) arsinh

√
u du independently of F . By our

construction of k, this is ≪ 1
T .

Peter Humphries Quantitative Equidistribution on Hyperbolic Surfaces



Inequalities for the Wasserstein Distance

Sketch of proof 3/4.
By Parseval, Cauchy–Schwarz, assumptions on k, and properties of
the Selberg–Harish-Chandra transform,∣∣∣∣∣
∫

Γ\H

∫
Γ\H

F (w)K (z , w) dµ(w) dν1(z)

−
∫

Γ\H

∫
Γ\H

F (w)K (z , w) dµ(w) dν2(z)
∣∣∣∣∣
2

≤

∑
f ∈B

(1
4 + t2

f

)
|⟨F , f ⟩|2



×

∑
f ∈B

e−
t2
f

T2

1
4 + t2

f

∣∣∣∣∣
∫

Γ\H
f (z) dν1(z) −

∫
Γ\H

f (z) dν2(z)
∣∣∣∣∣
2
 .
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Inequalities for the Wasserstein Distance

Sketch of proof 4/4.
By Parseval in reverse, Green’s identity, and Lipschitz assumption,

∑
f ∈B

(1
4 + t2

f

)
|⟨F , f ⟩|2 = ⟨∆F , F ⟩

= 4
∫

Γ\H
ℑ(z)2

∣∣∣∣∂F
∂z

∣∣∣∣2 dµ(z)

≤ 1

independently of F ∈ Lip1(Γ\H).
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Binary Quadratic Forms

Definition
An integral binary quadratic form Q is a homogeneous polynomial

Q(x , y) = ax2 + bxy + cy2

for which a, b, c ∈ Z.

For brevity, we write Q = [a, b, c].
The discriminant of Q is b2 − 4ac.
Q is primitive if (a, b, c) = 1.
Q is positive definite if D < 0 and a, c > 0.

Let D be a fundamental discriminant.
We let QD denote the set of primitive integral binary quadratic
forms of discriminant D that are positive definite if D < 0.
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Binary Quadratic Forms and Narrow Ideal Classes
The group Γ := SL2(Z ) ∋ γ acts on QD via

(γ · Q)(x , y) := Q
(

γ

(
x
y

))
.

Proposition
The set Γ\QD is isomorphic to the narrow class group Cl+D of the
quadratic field Q(

√
D).

Q = [a, b, c] 7→


−b +

√
D

2a Z + Z if a > 0,

b +
√

D
−2a Z + Z if a < 0,

a = wZ + Z 7→ N(x − wy)
N(a) , w ∈ Q(

√
D), w > σ(w).
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Heegner Points

Let D < 0. For each Q = [a, b, c] ∈ QD, define the point

zQ := −b + i
√

−D
2a ∈ H.

The orbit {ΓzQ} is a countable collection of points in H associated
to the equivalence class ΓQ ∈ Γ\QD, or equivalently a single point
on the modular surface Γ\H.

We call such a point a Heegner point or CM point. We let
zA ∈ Γ\H denote such a point associated to an ideal class
A ∈ ClD, or equivalently an element ΓQ of Γ\QD.

For each D < 0, there are hD such points, where hD := #ClD is
the class number of Q(

√
D). By the class number formula, the

number of Heegner points is ≈
√

−D.
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Heegner Points
Definition
For D < 0, we define a probability measure µD on Γ\H by

µD(B) := #{A ∈ ClD : zA ∈ B}
hD

for B ⊂ Γ\H,∫
Γ\H

f (z) dµD(z) := 1
hD

∑
A∈ClD

f (zA) for f : Γ\H → C.

By the class number formula,

hD = ωD
2π

√
−DL(1, χD).
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Closed Geodesics

Let D > 0. For each Q = [a, b, c] ∈ QD, define the geodesic

CQ :=
{

z ∈ H : a|z |2 + bℜ(z) + c = 0
}

⊂ H.

The orbit {ΓCQ} is a countable collection of geodesics in H
associated to the equivalence class ΓQ ∈ Γ\QD, or equivalently a
single closed geodesic on the modular surface Γ\H.

We let CA ∈ Γ\H denote such a closed geodesic associated to an
ideal class A ∈ Cl+D , or equivalently an element ΓQ of Γ\QD.

For each D > 0, there are h+
D such closed geodesics, where

h+
D := #Cl+D is the narrow class number of Q(

√
D). Each has

length 2 log ϵD, where ϵD is the least totally positive unit in
Q(

√
D). By the class number formula, the sum of lengths of

closed geodesics is ≈
√

D.
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Example: D = 19 (Image: Constantin Kogler)
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Example: D = 377 (Image: Einsiedler–Lindenstrauss–Michel–Venkatesh)
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Closed Geodesics
Definition
For D > 0, we define a probability measure µD on Γ\H by

µD(B) :=
∑

A∈Cl+D
ℓ(CA ∩ B)

2h+
D log ϵD

for B ⊂ Γ\H,∫
Γ\H

f (z) dµD(z) := 1
2h+

D log ϵD

∑
A∈Cl+D

∫
CA

f (z) ds for f : Γ\H → C.

Here ℓ(C) :=
∫

C ds with ds2 = y−2 dx2 + y−2 dy2 the length
element on H.

By the class number formula,∑
A∈Cl+D

ℓ(CA) = 2h+
D log ϵD = 2

√
DL(1, χD).
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Equidistribution of Heegner Points and Closed Geodesics

Theorem (Duke (1988))
(1) As D → −∞ along negative fundamental discriminants, the

probability measures µD equidistribute on Γ\H with respect to
the SL2(R)-invariant probability measure dµ = 3

π
dx dy

y2 .

(2) As D → ∞ along positive fundamental discriminants, the
probability measures µD equidistribute on Γ\H with respect to
the SL2(R)-invariant probability measure dµ = 3

π
dx dy

y2 .

Peter Humphries Quantitative Equidistribution on Hyperbolic Surfaces



Quantitative Equidistribution via the Wasserstein Distance

Theorem (H. (2025+))
(1) As D → −∞ along negative fundamental discriminants,

W1(µD, µ) ≪ε |D|−
1
12 +ε. Assuming GLH, we have the

stronger bound W1(µD, µ) ≪ε |D|−
1
4 +ε.

(2) As D → ∞ along positive fundamental discriminants,
W1(µD, µ) ≪ε D− 1

12 +ε. Assuming GLH, we have the stronger
bound W1(µD, µ) ≪ε D− 1

4 +ε.
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Quantitative Equidistribution via the Wasserstein Distance

Sketch of proof 1/2.
We must bound

1
T +

∑
f ∈B

e−
t2
f

T2

1
4 + t2

f

∣∣∣∣∣
∫

Γ\H
f (z) dµD(z) −

∫
Γ\H

f (z) dµ(z)
∣∣∣∣∣
2


1/2

and then choose T ≥ 1 to minimise this.

Since f is a cusp form,
∫

Γ\H f (z) dµ(z) = 0.

By Waldspurger’s theorem,∣∣∣∣∣
∫

Γ\H
f (z) dµD(z)

∣∣∣∣∣
2

≈
Hsgn(D)(tf )√
|D|L(1, χD)2

L
(

1
2 , f

)
L
(

1
2 , f ⊗ χD

)
L(1, ad f ) ,

where H+(tf ) ≍ 1
tf

and H−(tf ) ≍ 1.
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Quantitative Equidistribution via the Wasserstein Distance
Sketch of proof 2/2.
We roughly have that

W1(µD, µ) ≪ε
1
T

+ |D|−
1
4 +ε

 ∑
tf ≪T

Hsgn(D)(tf )
t2
f

L
(

1
2 , f

)
L
(

1
2 , f ⊗ χD

)
L(1, ad f )

1/2

.

To bound this moment of L-function unconditionally, we use
Hölder’s inequality and the cubic moment bound of Young
(following Conrey–Iwaniec)

∑
tf ∼T

L
(

1
2 , f ⊗ χD

)3

L(1, ad f ) ≪ε |D|1+εT 2+ε.

We get
W1(µD, µ) ≪ε

1
T + |D|−

1
12 +εT ε; take T = |D|

1
12 .
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Quantitative Equidistribution for QUE

A similar method gives bounds for mass equidistribution of Maaß
cusp forms assuming GLH.

Theorem (H. (2025+))
Let g ∈ B be an L2-normalised Hecke–Maaß cusp form on
SL2(Z)\H, and define the probability measure
dµg(z) := |g(z)|2 dµ(z). Assuming GLH,

W1(µg , µ) ≪ε t− 1
2 +ε

g .
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Remaining Questions

Question
Are these conditional bounds for the 1-Wasserstein distance
essentially sharp?

(The answer is surely yes.)

Question
Can one prove unconditional bounds for the 1-Wasserstein distance
concerning the mass equidistribution of holomorphic Hecke cusp
forms in the weight or level aspects?

(Holowinsky’s method is not directly applicable since it deals with
incomplete Eisenstein series rather than real-analytic Eisenstein
series.)
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Thank you!

Peter Humphries Quantitative Equidistribution on Hyperbolic Surfaces


