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Equidistribution

Let M be a topological space and i a (Borel) probability measure
on M. Let py be a sequence of (Borel) probability measures on M.
Definition

The sequence {u} equidistributes on M w.r.t. p if

im [ £() diae(x) = /M F(x) dpa(x)

k—o0

for all f € Cp(M).

Example

Let {x,} be a sequence in M and let uy denote the probability
measure

1 k 1
= = —#{1<n<k:x, :
wk(B) p 2 dx,(B) p {1<n<k:x,€ B}

where J, is the point mass at the point x, € M.
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Example: Kronecker—Weyl Equidistribution

Example
Let @ € R\ Q be irrational. Let M =T = R/Z and let

k
,uk(B) = % Zé{a”}(B) = %# {1 <n< k : an (mod 1) € B} .
n=1

Then {px} equidistributes on M w.r.t. the Lebesgue measure.
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Portmanteau Theorem

Theorem
Let (M, d) be a metric space. The following are equivalent:

o {uk} equidistributes on M w.r.t. p;
o lim / F(x) duk(x):/ F(x) du(x) for every bounded
k—oc0 J M M

Lipschitz function F : M — R (i.e. supy yem w < o0);
x#£y ’

@ limy_ oo uk(B) = u(B) for every (Borel) u-continuity set B
(i.e. 1(0B) =0).
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Weyl Equidistribution Criterion

Theorem

Let F be a subset of Cp(M) s.t. the set of finite linear
combinations of elements of F is dense in Cp(M). Then {ux}
equidistributes on M w.r.t. i iff

im [ F(x) dp(x) = /M A2) i)

k—o00

for every f € F.

Example

Let M =R/Z and F = {&*"™ : m € Z}. By the
Stone—WeierstraB theorem, the set of finite linear combinations of
elements of F is dense in Cp(M).
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Quantitative Equidistribution: Discrepancy

Equidistribution is a qualitative statement.
To make it quantitative, one must choose some method to
quantify the rate of equidistribution.

Definition
Let B be a collection of sets. The B-discrepancy between
probability measures vy, 15 is

Dp(v1,12) = sup [v1(B) — v2(B)|.
BB

If B generates the Borel sets on M, then limy_,o Dp(uk, ) =0
implies that {p} equidistributes on M w.r.t. p.

Example
@ If M is Euclidean, one can take B to be all boxes.
o If M is a vector space, one can take B to be all convex sets.

@ If M is a metric space, one can take B to be all balls.
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Quantitative Equidistribution: Discrepancy

Goal

If {uk} equidistributes on M w.r.t. p, give upper bounds for
Di(pk, 1) as k — oo for a given collection of sets B.

Theorem (Erd8s—Turan Inequality)

Take B to be all intervals | in T = R/Z, so that Dg = Dpox. Then
forany T > 1,

1
Dox 9 =
box (L, 1) <K T

+Zi

1<imier 1M

/ e—27rimx d,uk(X) _/ e—27rimx du(x) .
R/Z R/Z

Note [g /7 e 2mimx d;(x) = 0 for all m € Z \ {0} if p is Lebesgue.
In practise, the parameter T is chosen to minimise the RHS;

enlarging T decreases the size of the first term but increases the
length of the sum.
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Quantitative Equidistribution: Shrinking Target Problems

Another quantification of equidistribution is to allow the sets B to
shrink as k — oc.

Definition

Let B be a collection of (Borel p-continuity) sets. Let {By} be a

sequence in B such that p(Bx) > 0 and p(Bk) — 0 as k — oo. We
say that {ux} equidistributes on the shrinking sets By w.r.t. p if

lim 4 Br)

=1.
koo i By)

Example
e If M is Euclidean, one can take B to be all cubes and {By} to
be a sequence of rescaled cubes whose side lengths converge
to 0.

o If M is a metric space, one can take B to be all balls and { By}
to be a sequence of balls B, (x) with x fixed and r, — 0.
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Quantitative Equidistribution: Wasserstein Distance

These quantifications of equidistribution depend on choices of sets.

Question

Are there more intrinsic quantifications of the rate of
equidistribution?

Definition
Let (M, d) be a metric space and let v, > be probability measures
on M. The 1-Wasserstein distance between 1 and 15 is

#Wi(v1,12) =  sup '/ F(x) dvy(x /F ) duo(x
FeLip; (M)

where Lip; (M) denotes the space of Lipschitz functions

F : M — R for which supy yem W <1
xXF#y

Note that F need not be bounded (unless, say, M is compact).
In general, #1(v1,v2) need not be finite.
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Quantitative Equidistribution: Wasserstein Distance

Definition

Let (M, d) be a metric space and let v, 2 be (Borel) probability
measures on M. For p € [1,00), the p-Wasserstein distance
between v; and v5 is

olna)=__inf [ ey dn(x.y),
M

weN (v,

where (1, 12) 5 7 denotes the set of couplings of v1 and v;:
joint probability measures on M x M whose marginals are v; and
o, so that (B x M) = v1(B) and m(M x B) = v»(B) for every
Borel set B C M.

A necessary and sufficient condition for this to be finite is that
S d(x,y)P dvi(x), [, d(x,y)P dva(x) < oo for some y € M.

The p-Wasserstein distances arise in the theory of optimal
transport. They are also commonly used in probability theory as a
distance function on probability measures.
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Quantitative Equidistribution: Wasserstein Distance

Theorem (Kantorovich—Rubinstein Duality)

These two definitions of the 1-Wasserstein distance agree:

inf /M d(x,y)dn(x,y)

7T€|-|(V1,V2)
= sup ‘/ F(x)dyl(x)—/ F(x) dva(x)
FeLipy (M) |/ M M

By the Portmanteau theorem, limy_, oo #1(pk, 1) = 0 implies that
{pk} equidistributes on M w.r.t. p.

The converse holds if [}, d(x, y) duk(x) and [, d(x,y) du(x) are
finite for some y € M.

Question J

How can one bound #4(v1,12)?
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Inequalities for the Wasserstein Distance

There is an analogue of the Erdés—Turan inequality for the
1-Wasserstein distance on T" = (R/Z)".

Theorem (Bobkov—Ledoux, Borda)
Let v1,vo be probability measures on T". Then for any T > 1,

W(v1,10) € \;_E

1
Iml3

)\ 1/3

o>

1<]|mljoe<T

/ e—27rim-x dl/l(X) _/ e—27rim~x dVg(X)
n ’]Tn

Recently used by Kowalski—Untrau for some problems in number
theory involving exponential sums over finite fields.
Goal

Prove an analogous inequality on finite volume hyperbolic surfaces
MH and apply this to arithmetic equidistribution problems.
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Inequalities for the Wasserstein Distance

Theorem (H. (2025+))

Let I be a cocompact lattice in H. Let v1,v, be probability
measures on I'\H. Then for any T > 1,

1
(v, 10) < 7
é ) 1/2
£(2) dn(z) — / £(2) dis(2)
fze;g 7+12 /I'\]HI MH
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Inequalities for the Wasserstein Distance

Observations:
e Distance function on MN\H is pr(z, w) := min.cr p(z, yw) with

= 2arsinh —Z=%__.
p(z,w) arsinh e

replaced by f € B, basis of nonconstant MaaB forms
(Laplacian eigenfunctions) on M'\H, L?-normalised w.r.t.
SLa(R)-invariant probability measure ;

° ef2rrim-x

|m|3 replaced by Laplacian eigenvalue + + t;

Sharp cutoff 1), <7 replaced by rapidly decaying weight
2

_%
e T2,

Similar inequality holds for cofinite but noncocompact lattices

I

e Also a continuous contribution from Eisenstein series at each
cusp;

e Since MNH is noncompact, need to assume a natural
non-escape of mass condition on v and v, for #i (v, 1,) to
be finite.
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Inequalities for the Wasserstein Distance

Sketch of proof 1/4.
Want to bound

sup
FeLip, (M\H)

/r P n() - /r L F@d2(2)

By a smoothing argument, suffices to assume F is smooth.
Key trick: convolve with a point-pair invariant kernel

(z,w) _ |z — w|?
2 43(2)(w)

K(z,w) =Y k(u(z,w)), u(z,w)= sinh? 2
~yer

Choose k : (0,00) — [0, 00) dependent on T such that
° 47r/ k(u)du =1,
0

o0 1
° / k(u) arsinh \/u du < 7
0

2,1
4+

o h(t) == 47T/0 K(u)P_y (1 +2u) du= &~ a7
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Inequalities for the Wasserstein Distance

Sketch of proof 2/4. |

Assumptions on k ensure that [y K(z, w) du(w) =1
independently of z. By the triangle inequality,

/r\H F(z) dvi(z) — /r . F(z) dva(z)

2
<>
j=1

o [ (F@) ~ F))K (e, w) d(o) i)
\H JI\H

- / F(w)K(z, w) du(w) dii(2)
MHJr\H

N / F(w)K(z, w) dp(w) dva(z)
MNH JN\H

By Lipschitz assumption together with unfolding, first two terms
are at most 167 [;° k(u) arsinh \/u du independently of F. By our
construction of k, this is < %
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Inequalities for the Wasserstein Distance

Sketch of proof 3/4.

By Parseval, Cauchy—-Schwarz, assumptions on k, and properties of
the Selberg—Harish-Chandra transform,

/ F(w)K(z, w) dp(w) i (2)

MH Jr\H

2

_/r F(w)K(z,w) du(w) dvy(z)
\H Jr\H

< (fz;s (3+2) 1 f>|2>

2

erB 411 +t7 /F\H el = /F\H f(z) dva(2)
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Inequalities for the Wasserstein Distance

Sketch of proof 4/4.

By Parseval in reverse, Green's identity, and Lipschitz assumption,

> (Ll1 + t%) (F,)|> = (AF, F)

feB
4 [ 9@
M\H

<1

oF
0z

dp(z)

independently of F € Lip,;(M\H). O
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Binary Quadratic Forms

Definition

An integral binary quadratic form @ is a homogeneous polynomial
Q(x,y) = ax® + bxy + ¢y

for which a, b, c € Z.

For brevity, we write Q = [a, b, c|.

@ The discriminant of Q is b? — 4ac.

e Q is primitive if (a, b, c) = 1.

@ Q@ is positive definite if D < 0 and a,c > 0.
Let D be a fundamental discriminant.

We let Qp denote the set of primitive integral binary quadratic
forms of discriminant D that are positive definite if D < 0.
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Binary Quadratic Forms and Narrow Ideal Classes

The group I := SLp(Z) 3 v acts on Qp via
(- Qxy) = Q (7 (j)) :

The set I'\Qp is isomorphic to the narrow class group CIE of the
quadratic field Q(v/D).

Proposition

_b;‘mz+z ifa>0,
Q=a, b,c]—
b+vD, 7 .o
—2a
N(x — wy)
a:WZ—i—ZHw, WGQ(\/E),W>O’(W)
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Heegner Points

Let D < 0. For each Q = [a, b, c] € Qp, define the point

_ —b+iy=D

The orbit {l'zg} is a countable collection of points in H associated
to the equivalence class 'Q € '\Qp, or equivalently a single point
on the modular surface N\ H.

We call such a point a Heegner point or CM point. We let
zp € MN\H denote such a point associated to an ideal class
A € Clp, or equivalently an element 'Q of '\ Qp.

For each D < 0, there are hp such points, where hp := #Clp is
the class number of Q(v/D). By the class number formula, the
number of Heegner points is ~ /—D.
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Heegner Points

Definition
For D < 0, we define a probability measure pp on MN\H by

#{A € Clp: zx € B}
hp

/ F(2) duo(z 72 f(za) for f: \H = C.
M\H D accip

up(B) = for B C MH,

By the class number formula,

= 22/=DL(1, x0).
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Closed Geodesics

Let D > 0. For each Q = [a, b, c] € Qp, define the geodesic

CQ::{ZEH:a|z[2+b%(z)+c:0}CH.

The orbit {TCq} is a countable collection of geodesics in H
associated to the equivalence class 'Q € '\ Qp, or equivalently a
single closed geodesic on the modular surface '\H.

We let C4 € IMN\H denote such a closed geodesic associated to an
ideal class A € CIB, or equivalently an element 'Q of '\ Qp.

For each D > 0, there are hg such closed geodesics, where
h}, == #CI1f is the narrow class number of Q(v/D). Each has
length 2log ep, where €p is the least totally positive unit in
Q(v/D). By the class number formula, the sum of lengths of
closed geodesics is ~ v/D.
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EXa m ple D (Image: Constantin Kogler

Hyperbolic Surfaces



Example: D = 377
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Closed Geodesics

Definition

For D > 0, we define a probability measure pup on MN\H by

ZAeClg {(Can B)

up(B) = for B ¢ N\H,
(B) 2h} logep \
1
f(z2)dup(z) = ——— /fzds for f: M\H — C.
/F\H (2) diio(2) 2hJ5 log ep Agjzlg Ca (2) \

v

Here {(C) := |, ds with ds? = y=2dx? + y~2 dy? the length
element on H.

By the class number formula,

S U(Ca) = 2hflogep = 2v/DL(1, xp).
AeClh

Peter Humphries Quantitative Equidistribution on Hyperbolic Surfaces



Equidistribution of Heegner Points and Closed Geodesics

Theorem (Duke (1988))

(1) As D — —oo along negative fundamental discriminants, the
probability measures pp equidistribute on I'\H with respect to

the SLy(R)-invariant probability measure du = % d;gy

(2) As D — oo along positive fundamental discriminants, the

probability measures pp equidistribute on I'\H with respect to

the SLo(R)-invariant probability measure dy = 3 &8

T y?
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Quantitative Equidistribution via the Wasserstein Distance

Theorem (H. (2025+))

(1) As D — —oo along negative fundamental discriminants,
Wi(up, ) <e |D|" 25, Assuming GLH, we have the
stronger bound #1(up, 1) <. ]D\*%Jrs.

(2) As D — oo along positive fundamental discriminants,
W1(up, 1) K¢ D-mte. Assuming GLH, we have the stronger
bound #1(up, 1) <e D—ate.
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Quantitative Equidistribution via the Wasserstein Distance

Sketch of proof 1/2.
We must bound

1/2
N\ Y

T | [ F@ duo(z) - [ (2)du(z)
M\H M\H

and then choose T > 1 to minimise this.

Since f is a cusp form, [r\y f(2) du(z) = 0.

By Waldspurger's theorem,
2 1 )
/ f(z)dup(z)| ~ Hsgn(D) (1) L<§’f) L(§=f®XD)
MH \/7 1 XD L(l’ i f) :

where Hy (tr) < + and H_(tr) =<
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Quantitative Equidistribution via the Wasserstein Distance

Sketch of proof 2/2.
We roughly have that

1
Wi(pp, 1) <z —

ot 5 gttt 1rex)

1/2

2
= 8 L(1,ad f)

To bound this moment of L-function unconditionally, we use
Holder's inequality and the cubic moment bound of Young
(following Conrey—lwaniec)

L(3,f ’
Z (j’ ¥ XD) <. ‘D|1+E T2+€.
S L(Ladf)
We get

1
%(“D’N)@?HDF%“T? take T =|D|©z. [
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Quantitative Equidistribution for QUE

A similar method gives bounds for mass equidistribution of MaaB
cusp forms assuming GLH.

Theorem (H. (2025+))

Let g € B be an L?-normalised Hecke—MaaB cusp form on
SL2(Z)\H, and define the probability measure
dug(z) = |g(2)[2 du(z). Assuming GLH,

1
7

Vﬂl(ﬂg7 ,U) <Lc tg
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Remaining Questions

Question

Are these conditional bounds for the 1-Wasserstein distance
essentially sharp?

(The answer is surely yes.)

Question

Can one prove unconditional bounds for the 1-Wasserstein distance
concerning the mass equidistribution of holomorphic Hecke cusp
forms in the weight or level aspects?

(Holowinsky's method is not directly applicable since it deals with
incomplete Eisenstein series rather than real-analytic Eisenstein
series.)
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Thank youl!
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