Galois Representations and Deformations – Exercise Sheet 1

Prof. Dr. G. Böckle
Dr. A. Shavali
04.08.2025

Let Γ be a profinite group, F a topological field, and $\rho : \Gamma \to GL_n(F)$ a continuous representation.

- **1. Exercise** (a) Assume that $F = \overline{\mathbb{F}_p}$ equipped with discrete topology. Show that $\rho(\Gamma)$ is finite and deduce that ρ factors through $GL_n(\mathbb{F}_q)$ for some finite extension \mathbb{F}_q of \mathbb{F}_p .
- (b) Assume that $F = \overline{\mathbb{Q}_p}$ with its usual topology. Use Baire category theorem (note that $GL_n(F)$ is locally compact and Hausdorff) to show that ρ factors through $GL_n(E)$ for some finite extension E of \mathbb{Q}_p .

Hint: The set of all subfields E of $\overline{\mathbb{Q}}_p$ that are finite over \mathbb{Q}_p is countable. (Why?) Hence $GL_n(\overline{\mathbb{Q}}_p)$ is the countable union of the corresponding $GL_n(E)$. Also, there are notes by Keith Conrad on *Compact subgroups*

- (c) Let E be as in part (b) and O_E its ring of integers. Show that there exists a rank n, O_E -lattice Λ in E^n that is stable under the action of Γ induced by ρ and deduce that in a suitable basis (after a conjugation) we can assume $\rho: \Gamma \to \operatorname{GL}_n(O_E)$.

 Hint: Let $L \subset E^n$ be any O_E -lattice of rank n. Show that there exists a normal open subgroup $H \subset \Gamma$ that stabilizes L. Intersect suitable translates of L to find Λ .
- (d) Assume that F = C equipped with usual complex topology. Show that ρ(Γ) is finite and deduce that (up to conjugation) ρ factors through GL_n(L) for some number field L. Hint: Let ||·|| be the spectral norm on matrices, i.e., ||α|| is the square root of the largest absolute value of an eigenvalue of α^tα, and consider the open set U := {α ∈ GL_n(C) | ||U 1|| < 1/2}. Show that U contains no non-trivial subgroup of GL_n(C) by analyzing {αⁿ | n ∈ Z} for any α ∈ U.
- (e) Let *L* be as in part (d) and O_L its ring of integers. Show that there exists a rank *n*, O_L -lattice Λ in L^n that is stable under the action of Γ induced by ρ . Show further that there is a number field $L' \supset L$ such that after a suitable base change ρ takes values in $GL_n(O_{L'})$.

For a matrix $\alpha \in M_n(A)$ over a ring A, we denote by $\operatorname{cp}_\alpha \in A[X]$ its (monic degree n) characteristic polynomial. For a representation ρ as above, we denote by cp_ρ the map $\Gamma \to F[X], g \mapsto \operatorname{cp}_{\rho(g)}$. For a finite length module M over a (not necessarily commutative) ring R its semisimplification is a finite length semisimple module M^{ss} that has the same Jordan-Hölder factors, counted with multiplicity as M.

- **2. Exercise** Let $\rho : \Gamma \to GL_n(F)$ be as above.
 - (a) Use the Jordan-Holder theorem for modules over rings to show that every finite dimensional representation of a group has a unique semi-simplification (up to isomorphism).
 - (b) Show that a finite dimensional representation and its semi-simplification have the same characteristic polynomial. In particular, $\rho^{ss}:\Gamma\to \operatorname{GL}_n(F)$ is a semisimple representation such that $\operatorname{cp}_{\rho}=\operatorname{cp}_{\rho^{ss}}$ and the unique such by the Brauer-Nesbitt Theorem (see below).
 - (c) Suppose $F \supset \mathbb{Q}_p$ is finite with ring of integers \mathcal{O}_F , uniformizer π and residue field k_F . Let $\Lambda \subset F^n$ be a Γ -stable sublattice for the action via ρ , and denote by $\rho_\Lambda : \Gamma \to \operatorname{GL}_n(\mathcal{O}_F)$ the representation with respect to an \mathcal{O}_F -basis of Λ . Clearly the reduction $\mathcal{O}_F \to k_F$ induces a representation $\overline{\rho}_\Lambda : \Gamma \to \operatorname{GL}_n(k_F)$. Show that $\overline{\rho}_\Lambda^{\operatorname{ss}}$ is independent of Λ . Hint: Show that $\operatorname{cp}_\rho = \operatorname{cp}_{\rho_\Lambda}$ under $\mathcal{O}_F[X] \subset F[X]$, and that $\operatorname{cp}_{\overline{\rho}_\Lambda} = \operatorname{cp}_{\rho_\Lambda} \pmod{\pi}$.

- (d) Let F be as in (b). Show that there exists a finite extension $F' \supset F$ with residue field $k_{F'}$, and a Γ -stable lattice $\Lambda' \subset (F')^n$ for the induced action by Γ such that (i) $\rho_{\Lambda'}$ takes values in $GL_n(\mathcal{O}_{F'})$ and $\overline{\rho}_{\Lambda'}: \Gamma \to GL_n(k_{F'})$ is semisimple.
 - **Hint:** Combine (a) and part (c) of Exercise 1 to show that ρ_{Λ} (mod π) is block upper triangular with respect to a suitable \mathcal{O}_F -basis. One can now conjugate ρ_{Λ} by a suitable diagonal matrix over an extension of the form $F' = F(\sqrt[n]{\pi})$ to obtain the wanted Λ' .
- (e) Show that a Λ' as in (d) need in general not exist over F.

Recall that the Brauer–Nesbitt theorem states that if $r,r':G\to GL_n(E)$ are two semi-simple (not necessarily continuous) representation over any field E, then ρ and ρ' are isomorphic (conjugate) if and only if they have the same characteristic polynomial. If char(E) is 0 or strictly greater than n, then it is enough for the two representation to have the same trace.

- **3. Exercise** Let *E* be a finite extension of \mathbb{Q}_p with ring of integers \mathcal{O} and residue field *k*. Let r, r': $G \to \mathrm{GL}_n(E)$ and $r_{\mathcal{O}}, r_{\mathcal{O}} : G \to \mathrm{GL}_n(\mathcal{O})$ be representations of *G*, and $\overline{r_{\mathcal{O}}}$ be the reduction $r_{\mathcal{O}} \otimes_{\mathcal{O}} k$.
 - (a) Assume that r_E is irreducible and $\text{Tr}(r_E) = \text{Tr}(r_E')$. Show that r_E' is irreducible and $r_E \simeq r_E'$.
 - (b) Assume that $\overline{r_{\mathcal{O}}}: G \to \operatorname{GL}_n(k)$ is irreducible and $\operatorname{Tr}(r_{\mathcal{O}}) = \operatorname{Tr}(r'_{\mathcal{O}})$. Show that $r_{\mathcal{O}} \simeq r'_{\mathcal{O}}$. **Hint:** Show that any two \mathcal{O} -lattices Λ, Λ' in E^n of rank n that are stable under G are homothetic; first rescale Λ' such that $\Lambda \supset \Lambda' + \pi \Lambda \supsetneq \pi \Lambda$ for π a uniformizer of E.
 - (c) Give a counter-example to the Brauer-Nesbitt theorem without the semi-simplicity condition.

Let K be a number field and S a finite subset of the set Pl_K of places of K. For $v \in \operatorname{Pl}_K^{\operatorname{fin}} \setminus S$, let Frob_v be a Frobenius automorphism in $G_{K,S}$ (unique up to conjugation in $G_{K,S}$). Let E be a p-adic field.

- **4. Exercise** Let $\rho, \rho' : G_{K,S} \to GL_n(E)$ be semisimple continuous for E a p-adic field. Show that the following are equivalent:
 - (i) $\rho \simeq \rho'$.
- (ii) $\operatorname{cp}_{\rho(\operatorname{Frob}_v)} = \operatorname{cp}_{\rho'(\operatorname{Frob}_v)}$ for all $v \in \operatorname{Pl}_K^{\operatorname{fin}} \setminus S$
- (iii) $\operatorname{Tr}(\rho(g)) = \operatorname{Tr}(\rho'(g))$ for all $g \in G_{K,S}$.
- (iv) $\operatorname{Tr}(\rho(\operatorname{Frob}_v)) = \operatorname{Tr}(\rho'(\operatorname{Frob}_v))$ for all $v \in \operatorname{Pl}_K^{\operatorname{fin}} \setminus S$.

Hints: (iv)⇒(iii) uses the Čebotarev Density Theorem. (iii)⇒(i) may use Brauer-Nesibtt, or Bourbaki, Algébre, ch. 8, §12, n I, prop. 3.

5. Exercise Show that a 2-dimensional odd ℓ -adic representation of $\Gamma_{\mathbb{Q}}$ is irreducible if and only if it is absolutely irreducible.