Galois Representations and Deformations – Exercise Sheet 2

Prof. Dr. G. Böckle Dr. A. Shavali

05.08.2025

Let Γ be a profinite group. For p a prime, by Γ_p we denote the maximal pro-p quotient of Γ . Let also E be a p-adic field with ring of integers \mathcal{O} , uniformizer $\varpi_{\mathcal{O}}$ and residue field \mathbb{F} . Denote by $\mathrm{CNL}_{\mathcal{O}}$ the category of complete noetherian \mathcal{O} -algebras with residue field \mathbb{F} and by $\mathrm{Ar}_{\mathcal{O}}$ the full subcategory on Artin rings.

Let $A \in CNL_{\mathcal{O}}$ and \mathfrak{m}_A its maximal ideal. Then the graded ring associated with A is defined as

$$\operatorname{gr}(A) = k \oplus (\mathfrak{m}_A/\mathfrak{m}_A^2) \oplus (\mathfrak{m}_A^2/\mathfrak{m}_A^3) \oplus \cdots$$

with the evident addition and multiplication. Let $\mathfrak{m}_A = (x_1, \cdots, x_n)$, then one easily sees that $[x_1], \cdots, [x_n] \in \mathfrak{m}_A/\mathfrak{m}_A^2$ generate $\operatorname{gr}(A)$ as a k-algebra. gr is clearly a functor, a morphism $\phi: A \to B$ in $\operatorname{CNL}_{\mathcal{O}}$ induces a morphism $\operatorname{gr}(\phi): \operatorname{gr}(A) \to \operatorname{gr}(B)$. It is not hard to see that if $\operatorname{gr}(\phi)$ is either injective or surjective, so is ϕ (see Proposition 3 here). You can use all these easy facts without proof throughout this sheet.

- **6. Exercise** For $A \in \text{CNL}_{\mathcal{O}}$ let $t_A^* = \mathfrak{m}_A/(\mathfrak{m}_A^2 + \varpi_{\mathcal{O}}A)$ be the (mod $\varpi_{\mathcal{O}}$) cotangent space.
 - (a) Show that a map in $CNL_{\mathcal{O}}$ is surjective if and only if it induces a surjection on the cotangent spaces.

Hint. Assume $\phi: A \to B$ induces a surjection $t_A^* \to t_B^*$. First show that $\mathfrak{m}_A/\mathfrak{m}_A^2 \to \mathfrak{m}_B/\mathfrak{m}_B^2$ is surjective and then use the associated graded rings.

(b) Let $\phi: A \to B$ be a morphism in $CNL_{\mathcal{O}}$. Show that the induced map $Hom(B, -) \to Hom(A, -)$ is smooth if and only if B is a power series ring over A (as an A-algebra).

Hint. Choose a basis $x_1,...,x_n \in B$ for $t_{B/A}^* = \mathfrak{m}_B/\mathfrak{m}_B^2 + B\mathfrak{m}_A$ and let $C = A[[X_1,...,X_n]]$. Use the remark after proposition 9 from the lectures (with A playing the role of \mathcal{O}) to construct a map of local A-algebras:

$$B \to C/\mathfrak{m}_C^2 + C\mathfrak{m}_A$$

Then use the smoothness assumption to lift this to a map $B \to C/\mathfrak{m}_C^2$, then to $B \to C/\mathfrak{m}_C^3$, and so on.

- (c) Show that the morphism $D_{\overline{\rho}}^{\square} \to D_{\overline{\rho}}$ which forgets the framing is smooth, for any representation $\overline{\rho}$.
- **7. Exercise** Let $F: \mathrm{CNL}_{\mathcal{O}} \to \mathrm{Set}$ be a functor such that $F(\mathbb{F}) = \{*\}$ and the Mayer–Vietoris map $(*)_{T_F}: F(\mathbb{F}[\varepsilon]) \times_{\mathbb{F}} \mathbb{F}[\varepsilon]) \to F(\mathbb{F}[\varepsilon]) \times F(\mathbb{F}[\varepsilon])$ is bijective. Show that $T_F = F(\mathbb{F}[\varepsilon])$ is an \mathbb{F} -vector space for the following actions:
 - (i) The map $\mathbb{F} \to \operatorname{End}_{\operatorname{Set}}(T_F)$, $\alpha \mapsto F(m_\alpha)$ defining the scalar multiplication on T_F , is induced from

$$\mathbb{F} \to \operatorname{End}_{\operatorname{Ar}_{\mathcal{O}}}(\mathbb{F}[\varepsilon]), \alpha \mapsto m_{\alpha} \text{ with } m_{\alpha}(x + \varepsilon y) = x + \varepsilon \alpha y \quad \text{ for } x, y \in \mathbb{F}.$$

(ii) The map $T_F \times T_F \to T_F$ is given by $F(+) \circ (*)^{-1}_{T_F}$ for

$$+: \mathbb{F}[\varepsilon] \times_{\mathbb{F}} \mathbb{F}[\varepsilon] \to \mathbb{F}[\varepsilon], (x + \varepsilon y, x + \varepsilon y') \mapsto (x + \varepsilon (y + y')) \quad \text{for } x, y, y' \in \mathbb{F}.$$

- **8. Exercise** Let $\overline{\rho}: \Gamma \to GL_n(\mathbb{F})$ be a continuous representation and fix a character $\mu: \Gamma \to \mathcal{O}^{\times}$ lifting $\det(\overline{\rho})$. Show that there are natural isomorphisms of k-vector spaces
 - (a) $Z^1(\Gamma, \operatorname{ad}^0(\overline{\rho})) \simeq D_{\overline{\rho}}^{\square, \mu}(\mathbb{F}[\epsilon]).$

(b)
$$H^1(\Gamma, \operatorname{ad}^0(\overline{\rho})) \simeq D^{\mu}_{\overline{\rho}}(\mathbb{F}[\epsilon]).$$

For the following exercise, you may freely use the following **Theorem** (Carayol). Let $\rho:\Gamma\to \operatorname{GL}_n(A)$ be a continuous representation with Γ profinite and (A,\mathfrak{m}) a complete local \mathcal{O} -algebra with residue field \mathbb{F} and such that the reduction $\overline{\rho}:=\rho\otimes_A\mathbb{F}$ is absolutely irreducible. Let A^{Tr} be the closed \mathcal{O} -subalgebra generated by $\{\operatorname{Tr}(\rho(g)):g\in\Gamma\}$. Then there exists a representation $\rho^{\operatorname{Tr}}:\Gamma\to\operatorname{GL}_n(A^{\operatorname{Tr}})$, unique up to isomorphism, such that $\rho\cong\rho^{\operatorname{Tr}}\otimes_{A^{\operatorname{Tr}}}A$.

- **9. Exercise** Suppose that Γ satisfies the condition Φ_p and that $\overline{\rho}:\Gamma\to \mathrm{GL}_n(\mathbb{F})$ is an absolutely irreducible representation, and let $R^{\square}_{\overline{\rho}}$ in $\mathrm{CNL}_{\mathcal{O}}$ be an associated universal lifting ring. Show the following:
 - (a) One has $(R_{\overline{\rho}}^{\square})^{\mathrm{Tr}} = R_{\overline{\rho}}^{\square}$.
 - (b) Let A be a complete local \mathcal{O} -algebra with residue field \mathbb{F} and let $\rho: \Gamma \to \operatorname{GL}_n(A)$ be a lift of $\overline{\rho}$. Then A^{Tr} lies in $\operatorname{CNL}_{\mathcal{O}}$.
- **10. Exercise** In this exercise we shall prove the existence of $R^{\square}_{\overline{\rho}}$ for $\overline{\rho}: \Gamma \to \operatorname{GL}_n(\mathbb{F})$ when Γ satisfies the finiteness condition Φ_p . For an arbitrary group Γ (not necessarily profinite !), let $\operatorname{Rep}_{\Gamma}: O\operatorname{-Alg} \to \operatorname{Set}$ be the functor which sends an $O\operatorname{-algebra} A$ to the set of representations $\rho: \Gamma \to \operatorname{GL}_n(A)$.

We proceed in the following steps:

- (a) Let first assume that Γ be a discrete finitely generated free group on d generators. Show that $\operatorname{Rep}_{\Gamma}$ is representable by GL_n^d .
- (b) Let now Γ be finite. Show that $\operatorname{Rep}_{\Gamma}$ is representable by a closed subscheme $\operatorname{Spec} \mathcal{R}$ of GL_n^d . Hint. Represent Γ by finitely many generators, say d many, and finitely many relations. The relations can be interpreted as equations cutting out a subscheme of GL_n^d .
- (c) Let again Γ be finite. Show that $\overline{\rho}$ induces an O-algebra homomorphism $\alpha_{\overline{\rho}} : \mathcal{R} \to \mathbb{F}$ for \mathcal{R} from (b), and that prove that for $I = \ker \alpha_{\overline{\rho}}$ that I-adic completion of \mathcal{R} represents $D_{\overline{\rho}}^{\square}$.
- (d) Denote by $R_{\Gamma,\overline{\rho}}^{\square}$ the ring from (c). Let $\phi:\Gamma'\to\Gamma$ a morphism of finite groups. Interpreting ϕ as a map of deformation functors, show that ϕ induces a morphism $r_{\phi}:R_{\Gamma',\overline{\rho}}^{\square}\to R_{\Gamma,\overline{\rho}}^{\square}$.
- (e) Let $H_0=\ker\overline{\rho}$ and consider the restriction $\overline{\rho}_0=\overline{\rho}|_{H_0}$. Show that $T_{R_{\Gamma,\overline{\rho}}^\square}$ is naturally a subspace of $T_{R_{H_0,\overline{\rho}_0}^\square}$, and that $T_{R_{H_0,\overline{\rho}_0}^\square}=\operatorname{Hom}_{\operatorname{Groups}}(H_0,\mathbb{F}_p)\otimes_{\mathbb{F}_p}M_n(\mathbb{F})$.
- (f) Let now Γ be an arbitrary profinite group, let Γ_0 be its quotient $\Gamma/\ker\overline{\rho}$, and write Γ as a filtered inverse limit $\lim_{i\in I}\Gamma_i$ for finite groups Γ_i such that Γ_0 is a terminal objects. By (d) we have a corresponding inverse system of $R_{\Gamma_i,\overline{\rho}}^{\square}$, and we define $R_{\Gamma,\overline{\rho}}^{\square}$ as the complete \mathcal{O} -algebra $\lim_{i\in I}R_{\Gamma_i,\overline{\rho}}^{\square}$. Show that $R_{\Gamma,\overline{\rho}}^{\square}$ represents $\mathcal{D}_{\overline{\rho}}$.
- (g) Suppose finally that Γ satisfies Φ_p . Show that the limit in (f) induces an isomorphism $T_{R_{\Gamma,\overline{\rho}}^{\square}} = \lim_{i \in I} T_{R_{\Gamma,\overline{\rho}}^{\square}}$ in which $\dim_{\mathbb{F}} T_{R_{\Gamma,\overline{\rho}}^{\square}}$ is bounded by $\operatorname{Hom}_{\operatorname{Groups}}(H_0,\mathbb{F}_p) \otimes_{\mathbb{F}_p} M_n(\mathbb{F})$, independently of i, and deduce that $\dim_{\mathbb{F}} T_{R_{\Gamma,\overline{\rho}}^{\square}}$ is finite.
- (h) Suppose that Γ satisfies Φ_p . Show that $R_{\Gamma,\overline{\rho}}^{\square}$ lies in $\mathrm{CNL}_{\mathcal{O}}$ for the ring from (f). **Hint:** Let $t = \dim_{\mathbb{F}} T_{R_{\Gamma,\overline{\rho}}^{\square}}$. Use (g) to show that for any fixed m > 0 the system of rings $(R_{\Gamma,\overline{\rho}}^{\square}/\mathfrak{m}_{?}^{m})_{i}$ becomes stationary and is a quotient of $\mathcal{R}_{t} := \mathcal{O}[[X_{1},\ldots,X_{t}]]$. The mod \mathfrak{m}^{m} inverse limits form an inverse system converging to $R_{\Gamma,\overline{\rho}}^{\square}$, and this will prove (h).

11. Exercise Let K/\mathbb{Q} be the splitting field of $X^3 - X + 1$. Then one easily sees that $Gal(K/\mathbb{Q}) \simeq S_3$. Since the discriminant of $X^3 - X + 1$ is equal to −23, the extension K/\mathbb{Q} is unramified outside 23 and ∞. Recall representation theory of S_3 and consider the standard representation of S_3 over \mathbb{F}_{23} :

$$\operatorname{std}: S_3 \hookrightarrow \operatorname{GL}_2(\mathbb{F}_{23})$$

which is faithful and absolutely irreducible (note that $23 \nmid \sharp S_3$). One can easily see that $\operatorname{ad}(\operatorname{std}) \simeq \operatorname{std} \oplus 1 \oplus \operatorname{sign}$ and therefore $\operatorname{ad}(\operatorname{std})^{\vee} \simeq \operatorname{ad}(\operatorname{std})$. Also, notice that for n > 0 all higher cohomology groups $H^n(S_3, V)$ vanish for $V \in \operatorname{Rep}_{\mathbb{F}_{23}}(S_3)$, because they must be 6-torsion (or because $23 \nmid 6$ and hence all representations are semi-simple, all exact sequences split and therefore all higher Ext groups vanish).

Now this gives us an irreducible Galois representation:

$$\overline{\rho}: G_{\mathbb{Q},\{23,\infty\}} \to \operatorname{Gal}(K/\mathbb{Q}) \simeq S_3 \xrightarrow{\operatorname{std}} \operatorname{GL}_2(\mathbb{F}_{23})$$

- (a) Show that $\overline{\rho}$ is odd.
- (b) Compute the cohomological dimension expectation of the deformation ring of $\overline{\rho}$.
- (c) Let $G := (G_{K,\{23,\infty\}}^{ab})_{23}$. One can use global class field theory to analyze this group and show that $G/([G,G]G^{23}) \simeq \operatorname{ad}(\overline{\rho})$ as a representation of S_3 (see Boston). Use this fact to show that $\overline{\rho}$ is unobstructed.

Hint. Let $S = \{23, \infty\}$. First use the global Euler characteristic formula to show that it is enough to prove $\dim H^1(G_{\mathbb{Q},S}, \operatorname{ad}(\overline{\rho})) = 3$. Then write the inflation restriction sequence to relate this to $H^1(G_{K,S}, \operatorname{ad}(\overline{\rho}))^{S_3}$. Then show the following sequence of isomorphisms:

$$H^1(G_{K,S},\operatorname{ad}(\overline{\rho}))^{S_3} \simeq (H^1(G_{K,S},\mathbb{F}_{23}) \otimes \operatorname{ad}(\overline{\rho}))^{S_3} \simeq (\operatorname{Hom}(G_{K,S},\mathbb{F}_{23}) \otimes \operatorname{ad}(\overline{\rho}))^{S_3} \simeq \operatorname{Hom}_{S_3}(G_{K,S}^{ab},\operatorname{ad}(\overline{\rho}))$$
 and finish the proof.

- (d) Deduce that $R_{\overline{o}} \simeq \mathbb{Z}_{23}[[T_1, T_2, T_3]].$
- **12. Exercise** Let K be a local or global field. A famous theorem of Tate states that if one considers the trivial action of Γ_K on \mathbb{Q}/\mathbb{Z} then

$$H^2(\Gamma_K, \mathbb{Q}/\mathbb{Z}) = 0$$

You can use this without proof in this exercise.

(a) Show that this implies

$$H^2(\Gamma_K, \mathbb{C}^{\times}) = 0$$

Hint. Use the embedding $\iota: \mathbb{Q}/\mathbb{Z} \hookrightarrow \mathbb{C}^{\times}$ by the exponential map and show that coker ι is a \mathbb{Q} -vector space.

Now let $\rho: \Gamma_K \to \operatorname{PGL}_n(\mathbb{C})$ be a (continuous) projective Galois representation. Recall that the image of ρ is finite since Γ_K is a profinite group. Choose a set theoretic section ϕ for the natural projection $\operatorname{GL}_n(\mathbb{C}) \to \operatorname{PGL}_n(\mathbb{C})$.

(b) Show that for any $\sigma, \tau \in \Gamma_K$ one has

$$c(\sigma, \tau) := \phi(\rho(\sigma))\phi(\rho(\tau))\phi(\rho(\sigma\tau))^{-1} \in \mathbb{C}^{\times}$$
,

and that $(\sigma, \tau) \mapsto c(\sigma, \tau)$ is a 2-cocycle.

(c) Show that one can lift ρ to a continuous honest representation

$$\tilde{\rho}: \Gamma_K \to \mathrm{GL}_n(\mathbb{C})$$

Remark: Using non-abelian cohomology, one can directly prove (c) from (a).

Let K be a number field, $S \subset \operatorname{Pl}_K$ a finite subset, and let $\overline{\rho}: G_{K,S} \to \operatorname{GL}_n(\mathbb{F})$ be a continuous representation. Let v be a place of K and set $\overline{\rho}_v = \overline{\rho}_{G_{K,v}}$.

- **13. Exercise** A *local deformation collection* at v is defined to be a collection C_v of pairs (A, ρ_A) such that (A, \mathfrak{m}_A) is in $CNL_{\mathcal{O}}$, $\rho \in \mathcal{D}_{\overline{\rho}_v}^{\square}(A)$ and the following conditions hold:
- 1. $(\mathbb{F}, \overline{\rho}_v) \in \mathcal{C}_v$.
- 2. If $\phi: A \to A'$ is any morphism in $CNL_{\mathcal{O}}$ and $(A, \rho_A) \in \mathcal{C}_v$, then $(A', \phi \circ \rho_A) \in \mathcal{C}_v$.
- 3. If $A \stackrel{\alpha}{\to} C \stackrel{\beta}{\leftarrow} B$ is a diagram in $Ar_{\mathcal{O}}$ with α, β surjective and suppose that (A, ρ_A) , (B, ρ_B) and (C, ρ_C) lie in C_v and satisfy $\rho_C = \alpha \circ \rho_A = \beta \circ \rho_B$. Then $(A \times_C B, (\rho_A \oplus \rho_B)|_{A \times_C B})$ lies in C_v .
- 4. Suppose $(A_i, \rho_i)_{i \in I}$ is an inverse system in \mathcal{C}_v with $A := \lim_I A_i \in CNL_{\mathcal{O}}$. Then $(A, \lim_I \rho_i) \in \mathcal{C}_v$.
- 5. If (A, ρ) is in C_v and if ρ' is strictly equivalent to ρ , then $(A, \rho') \in C_v$.
- 6. Suppose $\alpha: A' \to A$ is an injective map in $CNL_{\mathcal{O}}$ and $\rho' \in \mathcal{D}_{\overline{\rho}_{v}}^{\square}(A')$. Then $(A, \alpha \circ \rho') \in \mathcal{C}_{v} \Rightarrow (A', \rho') \in \mathcal{C}_{v}$.

Given a local deformation collection C_v one obtains a functor $\mathcal{D}_{C_v}: \mathrm{CNL}_{\mathcal{O}} \to \mathrm{Set}$ by mapping $A \to \{\rho \in \mathcal{D}_{\overline{\rho}_v}^{\square} \mid (A, \rho) \in \mathcal{C}_v\}$ with maps on morphism using 2. The collection C_v also defines an ideal $I_{C_v} \in R_{\overline{\rho}_v}^{\square}$ defined as

$$\bigcap_{(A,\rho)\in\mathcal{C}_v}\ker\Big(R^{\square}_{\overline{\rho}_v}\stackrel{\alpha_\rho}{\longrightarrow}A\Big),$$

where α_{ρ} denotes the unique morphism induced from the universal property of $R_{\overline{\rho}_{v}}^{\square}$. Conversely, given a local deformation functor \mathcal{D}_{v} , one defines $\mathcal{C}_{\mathcal{D}_{v}}$ as the set of pairs (A, ρ) such that $\rho \in \mathcal{D}_{v}(A)$. Show that

- (a) For a local deformation collection C_v at v, the functor \mathcal{D}_{C_v} is a local deformation functor represented by the quotient map $R_{\overline{\rho}_v}^{\square} \to R_{\overline{\rho}_v}^{\square}/I_{C_v}$.
- (b) For a local deformation functor \mathcal{D}_v , the collection $\mathcal{C}_{\mathcal{D}_v}$ is a local deformation collection at
- (c) The assignments $C_v \mapsto \mathcal{D}_{C_v}$ and $\mathcal{D}_v \mapsto C_{\mathcal{D}_v}$ are mutually inverse.
- (d) For $v \in \operatorname{Pl}_K \setminus S$, the functor $\mathcal{D}_v^{\operatorname{unr}}$ mapping A to $\{\rho \in \mathcal{D}_{\overline{\rho}_v}^{\square}(A) \mid \rho \text{ is unramified }\}$ is a local deformation functor at v.