EXERCISES FOR THE 2025 AARHUS MINICOURSE

JAYCE R. GETZ

The exercises marked * in this document require more background to complete.

1. On the method of Godement and Jacquet

The primary reference for the material in these exercises is [GJ72]. Let F be a number field. The Schwartz space of $\mathfrak{gl}_n(\mathbb{A}_F)$ is the space

$$\mathcal{S}(\mathfrak{gl}_n(\mathbb{A}_F)) \coloneqq \mathcal{S}(\mathfrak{gl}_n(F_\infty)) \otimes C_c^\infty(\mathfrak{gl}_n(\mathbb{A}_F^\infty)).$$

The group $GL_n(\mathbb{A}_F) \times GL_n(\mathbb{A}_F)$ acts on this space via

$$\mathcal{R}(g,h)f(X) = f(g^{-1}Xh)$$

Let $\psi: F \backslash \mathbb{A}_F \to \mathbb{C}^{\times}$ be a nontrivial character. Let

$$\mathcal{F}_{\psi}(f)(x) \coloneqq \int_{\mathfrak{gl}_n(\mathbb{A}_F)} f(y) \psi(\operatorname{tr}(xy)) dx$$

be the Fourier transform. Here the measure dx is the unique Haar measure on $\mathfrak{gl}_n(\mathbb{A}_F)$ such that $\mathcal{F}_{\psi\psi} \circ \mathcal{F}_{\overline{\psi}} = Id$.

The Poisson summation formula states that

$$\sum_{\gamma \in \mathfrak{gl}_n(F)} f(\gamma) = \sum_{\gamma \in \mathfrak{gl}_n(F)} \mathcal{F}_{\psi}(f)(\gamma)$$

where

(1) Prove that $\mathcal{F}_{\psi} \circ \mathcal{R}(g,h) = |\det gh^{-1}|^n \mathcal{R}(h,g) \circ f$.

Let \langle , \rangle denote the pairing on $L^2(A_{\mathrm{GL}_n}\mathrm{GL}_n(F)\backslash\mathrm{GL}_n(\mathbb{A}_F))$.

Let π be a cuspidal automorphic representation of $A_{GL_n}\backslash GL_n(\mathbb{A}_F)$. For $(f, \varphi_1, \varphi_2) \in \mathcal{S}(\mathfrak{gl}_n(\mathbb{A}_F)) \times \pi \times \pi$ we can then form the zeta function

$$Z(f,\varphi_1,\varphi_2,s) \coloneqq \int_{\mathrm{GL}_n(\mathbb{A}_E)} \langle f(g)\varphi_1(g),\varphi_2\rangle |\det g|^{s-(n-1)/2} dg.$$

- (2) When n=1, prove that $Z(f,\varphi_1,\varphi_2,s)$ converges absolutely for $\operatorname{Re}(s)>1$.
- (2*) Prove in general that $Z(f, \varphi_1, \varphi_2, s)$ converges for Re(s) sufficiently large (Hint: bounding φ by the trivial representation may help).
- (3) Assume φ is fixed by $GL_n(\widehat{\mathcal{O}}_F^S)$ and that $f = f_S \mathbb{1}_{\mathfrak{gl}_n(\widehat{\mathcal{O}}_F^S)}$. Prove that

$$Z(\varphi_1, \varphi_2, f, s) = \int_{\mathrm{GL}_n(F_S)} f_S(g_S) \langle \varphi_1(g_S) dg_S, \varphi_2 \rangle \mathrm{tr}(\pi |\det|^{s - (n - 1)/2}) (\mathbb{1}_{\mathfrak{gl}_n(\widehat{\mathcal{O}}_F^S)}).$$

(4) When n = 1, prove that

(1.0.1)
$$\operatorname{tr}(\pi |\det|^{s-(n-1)/2})(\mathbb{1}_{\mathfrak{gl}_n(\widehat{\mathcal{O}}_{\mathcal{F}}^S)}) = L(s, \pi^S)$$

 (4^*) Prove the same identity for all n.

For $a \in A_{GL_n}$ let

$$Z_a(f,\varphi_1,\varphi_2,s) = \int_{\mathrm{GL}_n(\mathbb{A}_F)^1} \langle f(ag)\varphi_1(g),\varphi_2\rangle dg.$$

Thus

$$Z(f, \varphi_1, \varphi_2, s) = \int_{A_{GL}} Z_a(f, \varphi_1, \varphi_2) |\det a|^{s - (n - 1)/2} da.$$

(5) Prove that

$$Z_{a}(f,\varphi_{1},\varphi_{2}) = \int_{\mathrm{GL}_{n}(F)\backslash\mathrm{GL}_{n}(\mathbb{A}_{F})^{1}} \sum_{\gamma\in\mathrm{GL}_{n}(F)} f(a\gamma g)\langle\varphi_{1}(g),\varphi_{2}\rangle dg$$

$$= \int_{\Delta\mathrm{GL}_{n}(F)\backslash\mathrm{(GL}_{n}(\mathbb{A}_{F})^{1})^{2}} \sum_{\gamma\in\mathrm{GL}_{n}(F)} f(ah^{-1}\gamma g)\langle\varphi_{1}(g),\varphi_{2}(h)\rangle dg dh.$$

(6) If n = 1 prove that

(1.0.2)
$$\int_{F^{\times} \setminus (\mathbb{A}_{F}^{\times})^{1}} f(a0g) \langle \varphi_{1}(g), \varphi_{2} \rangle dg = 0$$

unless π is trivial.

 (6^*) If n > 1 prove that

$$\int_{\mathrm{GL}_n(F)\backslash\mathrm{GL}_n(\mathbb{A}_F)^1} \sum_{\gamma \in \mathfrak{gl}_n(F) - \mathrm{GL}_n(F)} f(a\gamma g) \langle \varphi_1(g), \varphi_2 \rangle dg = 0.$$

(7) If n > 1, use Poisson summation to prove that

(1.0.3)
$$Z_a(f, \varphi_1, \varphi_2) = |a|^{-n} Z_{a^{-1}}(\mathcal{F}_{\psi}(f), \varphi_2, \varphi_1).$$

- (7*) Formulate and prove an analogue of (1.0.3) when n = 1.
- (8) Prove that $\int_{a:|\det a|\geq 1} Z_a(f,\varphi_1,\varphi_2)|a|^{s-(n-1)/2}da$ converges absolutely for all s.
- (9) Using (1.0.3), prove that $Z(f, \varphi_1, \varphi_2, s)$ admits a meromorphic continuation to the plane and satisfies the functional equation

$$(1.0.4) Z(f, \varphi_1, \varphi_2, s) = Z(\mathcal{F}_{\psi}(f), \varphi_2, \varphi_1, 1 - s).$$

The equality (1.0.4) together with (1.0.1) reduce the functional equation of the standard L-functions of automorphic representations of $GL_n(\mathbb{A}_F)$ to local considerations.

References

[GJ72] R. Godement and H. Jacquet. Zeta functions of simple algebras. Lecture Notes in Mathematics, Vol. 260. Springer-Verlag, Berlin-New York, 1972. 1

DEPARTMENT OF MATHEMATICS, DUKE UNIVERSITY, DURHAM, NC 27708 *Email address*: jgetz@math.duke.edu