Introduction to Relative Trace Formulas
Problem set 2

Notation : k is a field of characteristic # 2, {/k a separable quadratic extension, B a
quaternion algebra over k containing a copy of ¢, G = PGLyy, G® = B*/k* (or rather the
algebraic group whose k-points are given by this quotient) both containing a copy of the
torus T' = ¢* /k* (same remark).

Exercise 1 Let {; C B be the orthogonal complement of ¢ C B for the symmetric bilinear
form associated to the reduced norm N : B — k. Show that

(i) The restriction of N to { is the usual norm Ny, : € — k and that B = ( & (. For
d € B, we will write 6 = 0T + 0~ for the corresponding decomposition .

(ii) The map v : GB — P\ {1}, § — —% induces an injection
T(R\G” (k)/T (k) = P* (k) \ {1}
with image (—N(£3) \ {1}) sup{oo}.
(i) For § € GP(k), we have

1 if v(0) # 0,00
(TxT)s=<{ TA:={(t,t),t €T} ifv(0) =0
7% = {(t,t7),t €T} ifv(d) = oo.

w) There exists cg € k* such that N |,—~~ cgNy and we have a bijection
ly /
{quaternion alg B/k with { C B} Jiso ~ k™ [Ny (€°),

B [CB}.

(v) Deduce that
L] (G (k) = k*\ {1},

quaternion alg B/k with ¢cB
where GE .= v (G, \ {1}).
(vi) Reprove this using Exercise 6 (iv) from the first sheet.



Exercise 2 Let u: G — P\ {1}, (f; Z) — —2. Show that

(i) Forx € k* \ {1}, u; " (x) = A(k)v. A(k) with v, = (1 T)
(i) 1 (0) = A U ARG AG) U ARG AG) where o = (o 1) = (3 ).
(iii) ;' (00) = A(k)w U A(k)yLA(k) U A(k)yL A(k) where w = <(1) (1)) and vE = wyF.

Exercise 3 Assume that k = K is a number field and let n : A /JK* — {£1} be the
quadratic character associated to the quadratic extension L := (. We fix representatives of
the cosets A(K)\G(K)/A(K) as in the previous exercise.

1. Check that for v € K>\ {1}, the coset A(A)v,A(A) is closed in G(A) and deduce that
the relative orbital integral

Orb,, (f) =/ flaryzaz)n(az)dardas, f € CF(G(A)),

A(A)xA(A)

15 convergent.

2. Let f € CX(G(A)) and, for s € C, set
Z%T(f’ §) = / f(a1ng az)n(az)laz|*das.
A(A)x A(A)

Let p € C°(A) be defined by

and let
7% 9) = | el

be the correpsonding Tate’s Zeta integral. Show that for R(s) > 1 both Zeta integrals
converge and that we have Z,yo+(f, s) = ZTa% (. n, s). Deduce from that and Tate’s thesis

that Zﬁ(f,s) extends to an entire function on C. We then defined the regularized
orbital integral at vy to be

O (f) = (Z,:(f,9))

s=0

Propose a similar definition of all the orbital integrals Orbff(f), z € {0,00}.



3. Recall from Ezercise 4 of the previous sheet that the integral defining RTF a\g/a,,. Show
that this requarization admaits the following geometric expansion

RTFa\g/a,(f) = Z OI(f), [feCX(G(A)),

z€P! (K)
where
oy — | O (f) if ¢ {0, 00},
A0) = O E(f) + Onb™5 () if = € {0, 00).

Moreover show that, for a given f € C°(G(A)), all except finitely many of the terms
OI(f) are zero.

Hint : Use FExercise 5 from the previous problem set giving an expicit description of
the regularization of RTF q\g/a-

Exercise 4 Let E/F be a (separable) quadratic extension fo local fields, Ng/p : E* — F*
be the norm mapping and n : F*/Ngp(E*) ~ {£1} be the character associated to this
extension by local class field theory.

1. Let X = F? equipped with the A = F*-action t - (z,y) = (tz,t 'y). For f € C(X) =
C>(F?) and v € F* we define the local orbital integral

0up)= [ et et
A
(Note that the integrand is compactly supported hence the integral converges.) Let
Orb(X/A) :=={z € F* v O'(f) | f € C=(F?)}
be the space of orbital integral functions for X/A. Show that
Orb(X/A) = CZ(F) [px +nC (F) [px

(where we identify the two spaces on the right with function spaces on F* by restric-
tion. )

2. LetY = E equipped with the scaling action of T' = Ker Ng/p. For f € C2(Y) = C°(E)
and v € Ng/p(E>) we define the local orbital integral

Ou(f) = /T F(tz)dt

where z, € E* is any element with Ng/p(2,) = x. Show that the space of orbital
integral functions

Orb(Y/T) = {x € Ng/p(E*) = O,(f) | f € C=(E)}

is C°(F) |Np, p(E)-



3. Deduce the following transfer result. Pick e € F* \ Ng,p(£*). We say that a function
f € CX(X) and a pair of functions (fy, f-) € CX(Y) @& C2(Y) match if for every
xr € Ng/p(E*) we have

Show that for every f we can find a pair of matching functions (fy, f—) and, conversely,
that for every pair (fy, f—) we can find a function f matching it.



