Introduction to Relative Trace Formulas Problem set 2

Notation: k is a field of characteristic $\neq 2$, ℓ/k a separable quadratic extension, B a quaternion algebra over k containing a copy of ℓ , $G = \operatorname{PGL}_{2,k}$, $G^B = B^\times/k^\times$ (or rather the algebraic group whose k-points are given by this quotient) both containing a copy of the torus $T = \ell^\times/k^\times$ (same remark).

Exercise 1 Let $\ell_B^- \subset B$ be the orthogonal complement of $\ell \subset B$ for the symmetric bilinear form associated to the reduced norm $N: B \to k$. Show that

- (i) The restriction of N to ℓ is the usual norm $N_{\ell/k}: \ell \to k$ and that $B = \ell \oplus \ell_B^-$. For $\delta \in B$, we will write $\delta = \delta^+ + \delta^-$ for the corresponding decomposition.
- (ii) The map $\nu: G^B \to \mathbb{P}^1 \setminus \{1\}, \ \delta \mapsto -\frac{N(\delta^-)}{N(\delta^+)} \ induces \ an \ injection$

$$T(k)\backslash G^B(k)/T(k) \hookrightarrow \mathbb{P}^1(k) \setminus \{1\}$$

with image $(-N(\ell_B^-)\setminus\{1\})\sup\{\infty\}$.

(iii) For $\delta \in G^B(k)$, we have

$$(T \times T)_{\delta} = \begin{cases} 1 & \text{if } \nu(\delta) \neq 0, \infty \\ T^{\Delta} := \{(t, t), t \in T\} & \text{if } \nu(\delta) = 0 \\ T^{a\Delta} := \{(t, t^{-1}), t \in T\} & \text{if } \nu(\delta) = \infty. \end{cases}$$

(iv) There exists $c_B \in k^{\times}$ such that $N \mid_{\ell_B^-} \sim c_B N_{\ell/k}$ and we have a bijection

 $\{\textit{quaternion alg } B/k \textit{ with } \ell \subset B\} / iso \simeq k^{\times} / N_{\ell/k}(\ell^{\times}),$

$$B \mapsto [c_B].$$

(v) Deduce that

$$\bigsqcup_{quaternion\ alg\ B/k\ with\ \ell\subset B}\nu(G^B_{rs}(k))=k^\times\setminus\{1\},$$

where $G_{rs}^B := \nu^{-1}(\mathbb{G}_m \setminus \{1\}).$

(vi) Reprove this using Exercise 6 (iv) from the first sheet.

Exercise 2 Let $\mu: G \to \mathbb{P}^1 \setminus \{1\}$, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto -\frac{bc}{ad}$. Show that

(i) For
$$x \in k^{\times} \setminus \{1\}$$
, $\mu_k^{-1}(x) = A(k)\gamma_x A(k)$ with $\gamma_x = \begin{pmatrix} 1 & x \\ 1 & 1 \end{pmatrix}$.

(ii)
$$\mu_k^{-1}(0) = A(k) \sqcup A(k) \gamma_0^+ A(k) \sqcup A(k) \gamma_0^- A(k)$$
 where $\gamma_0^+ = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\gamma_0^- = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

(iii)
$$\mu_k^{-1}(\infty) = A(k)w \sqcup A(k)\gamma_{\infty}^+ A(k) \sqcup A(k)\gamma_{\infty}^- A(k)$$
 where $w = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\gamma_{\infty}^{\pm} = w\gamma_0^{\pm}$.

Exercise 3 Assume that k = K is a number field and let $\eta : \mathbf{A}^{\times}/K^{\times} \to \{\pm 1\}$ be the quadratic character associated to the quadratic extension $L := \ell$. We fix representatives of the cosets $A(K)\backslash G(K)/A(K)$ as in the previous exercise.

1. Check that for $x \in K^{\times} \setminus \{1\}$, the coset $A(\mathbf{A})\gamma_x A(\mathbf{A})$ is closed in $G(\mathbf{A})$ and deduce that the relative orbital integral

$$\operatorname{Orb}_{\gamma_x}(f) = \int_{A(\mathbf{A}) \times A(\mathbf{A})} f(a_1 \gamma_x a_2) \eta(a_2) da_1 da_2, \quad f \in C_c^{\infty}(G(\mathbf{A})),$$

is convergent.

2. Let $f \in C_c^{\infty}(G(\mathbf{A}))$ and, for $s \in \mathbf{C}$, set

$$Z_{\gamma_0^+}(f,s) := \int_{A(\mathbf{A}) \times A(\mathbf{A})} f(a_1 \gamma_0^+ a_2) \eta(a_2) |a_2|^{-s} da_2.$$

Let $\varphi \in C_c^{\infty}(\mathbf{A})$ be defined by

$$\varphi(x) = \int_{A(\mathbf{A})} f(a \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}) da$$

and let

$$Z^{\text{Tate}}(\varphi, \eta, s) := \int_{\mathbf{A}^{\times}} \varphi(t) \eta(t) |t|^{s} dt$$

be the corresponding Tate's Zeta integral. Show that for $\Re(s) > 1$ both Zeta integrals converge and that we have $Z_{\gamma_0^+}(f,s) = Z^{\text{Tate}}(\varphi,\eta,s)$. Deduce from that and Tate's thesis that $Z_{\gamma_0^+}(f,s)$ extends to an entire function on \mathbb{C} . We then defined the regularized orbital integral at γ_0^+ to be

$$\operatorname{Orb}_{\gamma_0^+}^{\operatorname{reg}}(f) := \left(Z_{\gamma_0^+}(f,s) \right)_{s=0}.$$

Propose a similar definition of all the orbital integrals $\operatorname{Orb}_{\gamma^{\pm}_{+}}^{\operatorname{reg}}(f)$, $x \in \{0, \infty\}$.

3. Recall from Exercise 4 of the previous sheet that the integral defining $RTF_{A\backslash G/A,\eta}$. Show that this regularization admits the following geometric expansion

$$\operatorname{RTF}_{A \setminus G/A, \eta}(f) = \sum_{x \in \mathbb{P}^1(K)} O_x^{\eta}(f), \quad f \in C_c^{\infty}(G(\mathbf{A})),$$

where

$$O_x^{\eta}(f) = \begin{cases} \operatorname{Orb}_{\gamma_x}(f) & \text{if } x \notin \{0, \infty\}, \\ \operatorname{Orb}_{\gamma_x^+}^{\operatorname{reg}}(f) + \operatorname{Orb}_{\gamma_x^-}^{\operatorname{reg}}(f) & \text{if } x \in \{0, \infty\}. \end{cases}$$

Moreover show that, for a given $f \in C_c^{\infty}(G(\mathbf{A}))$, all except finitely many of the terms $O_x^{\eta}(f)$ are zero.

Hint: Use Exercise 5 from the previous problem set giving an expicit description of the regularization of $RTF_{A\backslash G/A,\eta}$.

Exercise 4 Let E/F be a (separable) quadratic extension fo local fields, $N_{E/F}: E^{\times} \to F^{\times}$ be the norm mapping and $\eta: F^{\times}/N_{E/F}(E^{\times}) \simeq \{\pm 1\}$ be the character associated to this extension by local class field theory.

1. Let $X = F^2$ equipped with the $A = F^{\times}$ -action $t \cdot (x, y) = (tx, t^{-1}y)$. For $f \in C_c^{\infty}(X) = C_c^{\infty}(F^2)$ and $x \in F^{\times}$ we define the **local orbital integral**

$$O_x^{\eta}(f) := \int_A f(tx, t^{-1}) \eta(t) d^{\times} t.$$

(Note that the integrand is compactly supported hence the integral converges.) Let

$$Orb(X/A) := \{ x \in F^{\times} \mapsto O_r^{\eta}(f) \mid f \in C_c^{\infty}(F^2) \}$$

be the space of orbital integral functions for X/A. Show that

$$Orb(X/A) = C_c^{\infty}(F) \mid_{F^{\times}} + \eta C_c^{\infty}(F) \mid_{F^{\times}}$$

(where we identify the two spaces on the right with function spaces on F^{\times} by restriction.)

2. Let Y = E equipped with the scaling action of $T = \operatorname{Ker} N_{E/F}$. For $f \in C_c^{\infty}(Y) = C_c^{\infty}(E)$ and $x \in N_{E/F}(E^{\times})$ we define the local orbital integral

$$O_x(f) = \int_T f(tz_x)dt$$

where $z_x \in E^{\times}$ is any element with $N_{E/F}(z_x) = x$. Show that the space of orbital integral functions

$$\operatorname{Orb}(Y/T) := \{ x \in N_{E/F}(E^{\times}) \mapsto O_x(f) \mid f \in C_c^{\infty}(E) \}$$

is $C_c^{\infty}(F) \mid_{N_{E/F}(E^{\times})}$.

3. Deduce the following transfer result. Pick $\epsilon \in F^{\times} \setminus N_{E/F}(E^{\times})$. We say that a function $f \in C_c^{\infty}(X)$ and a pair of functions $(f_+, f_-) \in C_c^{\infty}(Y) \oplus C_c^{\infty}(Y)$ match if for every $x \in N_{E/F}(E^{\times})$ we have

$$O_x^{\eta}(f) = O_x(f_+)$$
 and $O_{\epsilon x}^{\eta}(f) = O_x(f_-)$.

Show that for every f we can find a pair of matching functions (f_+, f_-) and, conversely, that for every pair (f_+, f_-) we can find a function f matching it.