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| will speak about a spectral summation formula for the product of four
Fourier coefficients of cusp forms of weight 1/2.

But first | recall briefly my recent result on the Hyperbolic Circle Problem,
and a step of its proof:

[z—w]|?
4ImzImw *

Let H be the upper half plane. For z,w € H let u(z,w) =
For z € H and X > 2 define

N(z,X):=|{y € PSLy(Z) : 4u(yz,z)+2< X}.
A special case of an unpublished theorem of Selberg states that
N(z,X)=3X+0, (X) —3X 10, (X%+%) .

Let F be a fundamental domain of SLy(Z) in H and dy.. = 5.
THEOREM 1 (B, 2024). IfQ) C F is compact, then

=

(/Q (N (z,X) — 3X)2 d,uz> 1/2 _ 0n. (X%-I-e) — 00 (X%Jf

).



An important part of the proof was the following observation: if Ny (z, X)

is the contribution of the hyperbolic v € I" to N (z, X), then we can give
an expression for the inner product

/ Ny, (2, X1) Np (2, X2) dp,
F

whose most essential part is a sum of type

Z Z Z h(t% _4’t§ — 4, f) St17t27f7X19X2

t1>2t9>2 f2¢(t%—4) <t§—4)

where t1,to, f run over integers, S, +,.+.x,,x, IS an analytic expression,
and h (t7 — 4,t3 — 4, f) has the following arithmetic meaning:

If 61,62, f € Z, then h (61,62, f) is the number of SL5(Z)-equivalence
classes of pairs (Q1, Q2) of quadratic forms with integer coefficients

Qi (X,Y) = A;X*+ B; XY + C;Y?



such that the discriminant of @); is ¢;, and for the codiscriminant of ()4
and (), we have
B1By —2A,Cy — 2A5C, = f.

Explicit formulas for h (61, d2, f) were proved earlier under some condi-
tions by Hardy — Williams and Morales. E.g. Hardy and Williams proved
that if §; < 0 are fundamental discriminants, (6102, f) = 1, f2 — 6162 # 0
and 619- f is odd, then

h(61,60,f)= > (g)

e|(f?—6162)/4

This inner product formula was the starting point of our new formula
which expresses a spectral sum of the product of four Fourier coefficients
of cusp forms of weight 1/2 with generalizations of the class numbers

h (517 527 f)
We will take weighted sums over the above S L, (Z)-equivalence classes

of pairs of quadratic forms. We will call these sums generalized class
numbers.



We now turn to this spectral summation formula.
The weight 0 Kuznetsov formula for SLy(Z):

Let {u;(2) : j > 1} be a complete orthonormal system of cusp forms of
weight 0 for SLy(Z) with Agu;= (—5 — t7) u; having Fourier expansion

Z a;(m)Wo i, (4w |m|y) e (mz).

m=2£0

Similarly, let ¢ (m,s) be the mth Fourier coefficient of the Eisenstein
series F (z,s). Then for integers mn # 0 and for a nice test function h
one has:

Z“j(m)aj(”)h(tj) + ﬁ /OO ¢ (m, % +ir)¢ (n % + z’r) h(r)dr =

g1 o

c>1




Here hg is a number and h* are functions depending on h. We take h*
if mn >0and h™ if mn < 0.

Let H,, be the nth Hecke operator and H,u; = A\; (n) u;. For n > 0 we
have
n'/%a; (n) = a; (1) A; (n),

so for m,n > 0 we have
m!*n2a;(m)a;(n) = |a; (1)]* A; (m) A; (n).

Hence the Kuznetsov formula gives an expression for a spectral average
of
2
ja; (1)]7 Aj (m) Aj (n).

By the multiplicativity of the Hecke eigenvalues we get an expression
for a spectral average of products

jaj (1)]* Aj (ma) Ay (ma) ...\, (my).-

So we automatically get a formula for a sum involving the product of
more factors.



Recall the idea of the proof of the Kuznetsov formula:
For z € H define the Poincare series

P, (z,F) := Z F (Im~z)e(mRevyz),

where F'is a function on the positive real axis and m # 0 is an integer.
This is an automorphic function defined in an explicit way.

Then

/ P, (2, F) uj (2)dp, = aj (m)hm,r (t;)
-

with a function h,,, . By the spectral theorem we see that

/ P, (2. ) Py (. Fy)dp.
F

is a spectral average of the products a; (m)a; (n). So it remains to give
an elementary expression for this inner product, and it is possible to
express it as a sum of Kloosterman sums.



A function f on H is called an automorphic function of weight 1/2 if

F(v2) = v(v) ( r{2) )1/2 £(2)

74 (2)]

I
/N
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o

forevery v = (Z’ Z) € I'p(4), where j,(2) := cz+dand v(v) :
where ey =1ford=1(4) and ¢; =4, if d = —1(4).

Let V' be the subspace of automorphic function of weight 1/2 which are
square integrable on a fundamental domain of I'y(4) and cuspidal.

The hyperbolic Laplace operator of weight 1/2 is

0? 0? : 0
S = (g5 57)

A function F' € V is a cusp form of weight 1/2 if it is an eigenfunction of
Ay If Ay pF = (=% — t?) F, then one has the Fourier expansion

F(Z) — Z pF(m)W%sgn(m),it (47T ’m| y) € (mm) .
m=£0



For F € V define the operators 7, o and L := m0 In this way:

e () (2) r(-2)

oF (2) ::? 3 F(ZZV>

v mod 4

One can see that ., and ¢ map V into V, hence LisalsoaV — V
operator. It is known that L satisfies (L — 1) (L + 1) = 0.

Let V* be the subspace of V' with L-eigenvalue 1. This space is
called Kohnen’s subspace. It is known that a cusp form F of weight
1/2 for T'y(4) belongs to V* if and only if pr(m) = 0 for every integer
m = 2,3(4).

For automorphic forms F of weight 1 for I'y(4) and for an odd prime p
one can define the Hecke operator 7,.. The operators 7,2 and L form
a commouting family of self-adjoint operators V*+ — V1, and each of
these operators commute with A, /5.



Let F; (j = 1,2,...) be an orthonormal basis of V* consisting of
common eigenfunctions of A and the Hecke operators 7). Let

1
A1/2Fj — (_Z - ?) F;

for 5 > 1. Denote the Fourier coefficients of F; by b,(m), i.e.

It is possible to generalize the Kuznetsov formula for sums of the form

Z b;j(m)b;(n)h (r;) + Eisenstein part.
g=1

The other side contains generalized Kloosterman sums for 4|c:

S al@e (™)

d mod ¢, (d,c)=1
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The Kuznetsov formula has been generalized to arbitrary weights by
Proskurin. The proof uses the same idea sketched above, but uses
Poincare series of nonzero weight.

It is a further step to restrict the spectral sum to Kohnen’s subspace.

This can be done computing the action of L on the Fourier expansions at
various cusps, and combining the Proskurin formula for different cusps.

This was discussed in several papers by Biro, Ahlgren — Andersen,
Andersen — Duke and Blomer — Corbett.

However, since in weight 1/2 we have Hecke operators only for squares,
this does not give at once a formula for a sum involving the product of
more similar factors.

We show now how to give a formula for a weighted spectral sum
containing the product of four Fourier coefficients b;(m).

A summation formula of a different shape for the product of four half-
integral weight coefficients, in the case when two of the factors are first
coefficients, was proved by Blomer — Corbett.
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The idea is the following:

Instead of the Poincare series, we use another automorphic function
defined in an explicit way. Namely:

Let n, t be integers, n,t > 0, and for 6 := t* — 4n assume § # 0. Let

FW:{(Z Z) . a,b,c,d e Z, ad — bc=n, a—l—d:t}.

The group SL-(Z) acts on this set by conjugation.
If m is a function on [0, c0) and z,w € H, let

( ) \z—w\Q
m(z.w) =m
’ AlmzImw |’

Mt,n,m(z) = Z m(z,vz)

’YEFn,t

and let

This is an automorphic function with respect to SLs(Z).
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More generally: If v :(CC" Z) € 'y, let

Q. (X,Y)=cX?+(d—a)XY — bY?.
This is a one-to-one correspondence between I',, ; and
Qs == {AX?+ BXY +CY?: A ,B,C €Z, B> —4AC = §}
with § = t2 — 4n.

If Q € Qs with Q(X,Y) = aX? + bXY + ¢Y?, D is a fundamental
discriminant with D|§ and /D = 0,1 (mod 4), define

0 it (a,b,¢,D)> 1,
(%) if (a,b,c, D) =1,

where r is any number represented by @ with (r, D) = 1.
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If n,t are integers, n,t > 0, and for § := t> — 4n we have § # 0, D is
a fundamental discriminant with D|§ and /D = 0,1 (mod 4), m is a
function on [0, o) define

My n,p,m(2) = Z wp (v) m(z,7z) ,

'Yern,t

where wp (v) := wp (Q~). This is also an automorphic function with
respect to SLy(Z).

Similarly to the proof of the Kuznetsov formula, we have to compute the
following quantities:

1., The spectral coefficients:
/ My n,pm(2)uj (2) dp,
F
2., The inner products:

/ Mt17n17D17m1 Mtg,’n2,D2,m2d/1/Z'
f
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We start with
/ Mt17n17D17m1Mt25n27D25m2d/'LZ'
f

This is a summation over pairs

(71772) S F?711,751 X Fn2,t2 = H (nlatlan27t2) .
SL,(Z) acts on this set by conjugation, and we consider conjugacy
classes of pairs, similarly as in the proof of the Selberg Trace Formula.

E.g. if 64 >0, 6o > 0, and H* (n1,t1,n2,t3) is the set of such pairs
(71,72) € T'nyt, X I, v, for which the set of fixed points of +; do not
coincide with the set of fixed points of ~,, then

Z / mi (Za /71’2) ma (Za /72'2) d:uz
f

(v1,v2)EH* (n1,t1,n2,t2)

equals

Z th,D2(51,52,f)]<51,52, / 7m17m2>7

fEZ,f2#6102
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where [ (51, 02, ﬁ, mq, m2) IS an analytic expression, and the arith-
metic part is the following generalized class number:

hp, ., (01,62, f) == > wp, (Q1)wp, (Q2),
(Q1,Q2)

the summation is over the S Ly (Z)-equivalence classes of pairs (@1, Q2)
with Q; (X,Y) = 4, X* + B; XY + C;Y? such that the discriminant of Q;
IS §;, and for the codiscriminant of (); and (> we have

B1By — 24,0y — 2A,C, = .

For D1 = Dy, = 1 this is the class number h (1, d2, f).
We now turn to the spectral coefficients
/ M D.m(2)u; (2) dp.
f’
For this we have to introduce the Shimura correspondence.
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If F € V* satisfies A, o F = (— — t*) F and has the Fourier expansion

4m |m|y) e (mz),

F(z) = > br(m)W.

1sgn(m),it (
m#0, m=0,1(4)

then for every fundamental discriminant d let

ShaF (2) ==Y asn,r (k) Wo,2it (47 |k| y)e(k),

where

N[

aShdF (k) — Z |Ci|)

PQ=Fk,P>0

d 2
(F) b (AQ2)
There is a d such that b, (d) # 0, and with such d we define

ShimF} (2) := bj—l(d)ShdFj (2).
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It can be shown that we get the same function using any fundamental
discriminant d such that b, (d) # 0, and that ShimF; is an even Hecke
normalized Maass-Hecke cusp form of weight 0 for SL,(Z).

We know that

1
Ap (ShimF}) = (—Z - 47“]2) Shim F,

for any prime p > 2 we have that
H, (ShimF};) = Shim (7,2 F}) ,

and the map 7 — ShimF}; gives a bijection between the positive integers
and the even Hecke normalized Maass-Hecke cusp forms of weight 0
for SLQ(Z)

This follows mainly from the work of Baruch — Mao.

Using the Shimura lift, we can express the spectral coefficients as
products of two weight 1/2 Fourier coefficients in the case D > 0.
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Proposition. Let n,t be positive integers such that t* —4n = 3§ # 0, let
D > 0 be a fundamental discriminant with D|6 and §/D = 0,1 (mod 4).
Let w = ShimF}; for some j > 1 and let Agu = Au, A < 0. Write

(u,u) == [~ lw(2)|> dis. Then for a nice test functon m we have

J

1 -
[ Mo (el = 545DVt () Fonon (V.

(u,u)

where fsn.m can be explicitly given in terms of 0, n and m.

This follows from formulas proved for the left-hand side in my earlier
papers and from a Katok-Sarnak type formula.

The 6 < 0 case of this Proposition is enough for that case of our spectral
summation formula where there are two positive and two negative
coefficeients.

Note that this is not the hardest case but the only one what | can
precisely state at the moment.
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Notations:
1., If § # 0 with 6 = 0,1 (mod 4), the Zagier L-series times \5|3/2 IS:

* (g L S/QC(QS) - i
L* (s,6) := |d| g(s);qs > 1

r mod 2q, r2=4§(4q)

2., For: = 1,2 let §; < 0 be integers. Let D; > 0 be fundamental
discriminants for i = 1,2 with D;|; and §;/D; = 0,1 (mod 4). Let

. WD, (Ql) WD, <Q2>
E51,52,D1,D2 T Z M (Ql) I
(Q1,Q2)

where the summation is over the SL,(Z)-equivalence classes of pairs
(Q1,Q2) of quadratic forms such that the discriminant of @, is ¢,
Q1 = AQ2 with some )\ € Q. Here M (Q,) is the number of automorphs

of Q).

3., If f x (2) is a function for z > 0, let T, (y) denote

1 /OO DL i) T (3 +iz) |
28872 J, I (2iz)

4 4

1 1
F (— — iz, — +iz,1, —y) X (2) dz.
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THEOREM 2 (B, 2025). Fori =1,2letd; < 0 be integers. Let D; > 0
be fundamental discriminants for i = 1,2 with D;|0; and 06;/D; = 0,1
(mod4). If x is a nice test function which is holomorphic on a large
enough strip containing the real line, then the sum of

1 ?
53 01.0,01.0,L" (1,01) L™ (1,d2) x (1) :
3/4 - : . 01 02
|5152‘ Z (Shlij, Shlij) bj (Dl) bj D—1 bj D—2 bj (DQ)X (Tj)
j=1
and
. L7 (5, D1) L* (5,8 ) L (5, D2) L* (s, 8 ) x (%52

o ds

2mi J (1) 144¢ (2s) ¢ (2 — 2s)
equals

2
E51,52,D1,D2TX (O> + Z th,Dz (517 02, f) TX ( f o 1) y

fEZ,f2>6102)
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In this theorem we have two positive and two negative coefficients, and
this comes from

/ Mt17n17D17m1MtQJnQrDQJdelLLz
F

with Dy, Dy > 0, 51,52 < 0.

The cases when we have more positive than negative Fourier coef-
ficients can be handled in the same way: we still take Dy, Dy > 0,
and:

when we have four positive Fourier coefficients, we take 41,45, > 0, if
we have three positive Fourier coefficients, we take 9; > 0, d < 0.

But if there are more negative than positive Fourier coefficients, we
have to take D; < 0 or D; < 0.

However for D < 0 the terms v = (CCL Z) and adj (y) = ( d _b>

—C a
cancel out, so

My n,p,m(2) = Z wp (y)m(z,7z) = 0.
yE R ¢
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So for D < 0 we modify M; ., p.m in this way: for z,w € H let
hz,w):=(z—w)" |z —w| ~.

Let n,t be integers, n,t > 0, and let § :=t> —4n > 0. Let D < 0 be a
fundamental discriminant with D|é and §/D = 0,1 (mod 4), and

Nempm(@) = 3 wp () m (272)h (12 2) ("”) |

52(2)]

THEOREM 3 (B, 2025). Letd > 0, let D < 0 be a fundamental
discriminant with D|6 and 6/D = 0,1 (mod4). Let n,t > 0 be integers
such thatt* —4n = §. Let u = ShimF} for some j > 1 and let Agu = Au,
A < 0. Then for any nice test functon m we have

1

(u,u)

J

| Moo pon(@Jule)dis. = 545; (DY, (5) Fsnan (V).
F

where Fs n, m can be explicitly given in terms of 0, n and m.
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For the proof Theorem 3 the extension of the Katok-Sarnak formula
for the case of two negative Fourier coefficients is important. This
extension was proved relatively recently by Duke — Imamoglu — Té6th
and Imamoglu — Lageler — Téth.
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