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I will speak about a spectral summation formula for the product of four
Fourier coefficients of cusp forms of weight 1/2.

But first I recall briefly my recent result on the Hyperbolic Circle Problem,
and a step of its proof:

Let H be the upper half plane. For z, w ∈ H let u(z, w) = |z−w|2
4ImzImw .

For z ∈ H and X > 2 define

N (z,X) := |{γ ∈ PSL2(Z) : 4u (γz, z) + 2 ≤ X}| .

A special case of an unpublished theorem of Selberg states that

N (z,X) = 3X +Oz

(
X

2
3

)
= 3X +Oz

(
X

1
2+

1
6

)
.

Let F be a fundamental domain of SL2(Z) in H and dµz = dxdy
y2 .

THEOREM 1 (B, 2024). If Ω ⊆ F is compact, then(∫
Ω

(N (z,X)− 3X)
2
dµz

)1/2

= OΩ,ϵ

(
X

9
14+ϵ

)
= OΩ,ϵ

(
X

1
2+

1
7

)
.
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An important part of the proof was the following observation: if Nh (z,X)
is the contribution of the hyperbolic γ ∈ Γ to N (z,X), then we can give
an expression for the inner product∫

F
Nh (z,X1)Nh (z,X2) dµz

whose most essential part is a sum of type∑
t1>2

∑
t2>2

∑
f2 ̸=(t21−4)(t22−4)

h
(
t21 − 4, t22 − 4, f

)
St1,t2,f,X1,X2

where t1, t2, f run over integers, St1,t2,f,X1,X2 is an analytic expression,
and h

(
t21 − 4, t22 − 4, f

)
has the following arithmetic meaning:

If δ1, δ2, f ∈ Z, then h (δ1, δ2, f) is the number of SL2(Z)-equivalence
classes of pairs (Q1, Q2) of quadratic forms with integer coefficients

Qi (X,Y ) = AiX
2 +BiXY + CiY

2
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such that the discriminant of Qi is δi, and for the codiscriminant of Q1

and Q2 we have
B1B2 − 2A1C2 − 2A2C1 = f.

Explicit formulas for h (δ1, δ2, f) were proved earlier under some condi-
tions by Hardy−Williams and Morales. E.g. Hardy and Williams proved
that if δi < 0 are fundamental discriminants, (δ1δ2, f) = 1, f2 − δ1δ2 ̸= 0
and δ1δ2f is odd, then

h (δ1, δ2, f) =
∑

e|(f2−δ1δ2)/4

(
d

e

)
.

This inner product formula was the starting point of our new formula
which expresses a spectral sum of the product of four Fourier coefficients
of cusp forms of weight 1/2 with generalizations of the class numbers
h (δ1, δ2, f):
We will take weighted sums over the above SL2(Z)-equivalence classes
of pairs of quadratic forms. We will call these sums generalized class
numbers.
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We now turn to this spectral summation formula.

The weight 0 Kuznetsov formula for SL2(Z):

Let {uj(z) : j ≥ 1} be a complete orthonormal system of cusp forms of
weight 0 for SL2(Z) with ∆0uj=

(
−1

4 − t2j
)
uj having Fourier expansion

uj(z) =
∑
m ̸=0

aj(m)W0,itj (4π |m| y) e (mx) .

Similarly, let ϕ (m, s) be the mth Fourier coefficient of the Eisenstein
series E (z, s). Then for integers mn ̸= 0 and for a nice test function h
one has:

∑
j≥1

aj(m)aj(n)h (tj) +
1

4π

∫ ∞

−∞
ϕ

(
m,

1

2
+ ir

)
ϕ

(
n,

1

2
+ ir

)
h (r) dr =

= δmnh0 +
∑
c≥1

S (m,n, c)

c
h±

(√
|mn|
c

)
.
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Here h0 is a number and h± are functions depending on h. We take h+

if mn > 0 and h− if mn < 0.

Let Hn be the nth Hecke operator and Hnuj = λj (n)uj . For n > 0 we
have

n1/2aj (n) = aj (1)λj (n) ,

so for m,n > 0 we have

m1/2n1/2aj(m)aj(n) = |aj (1)|2 λj (m)λj (n) .

Hence the Kuznetsov formula gives an expression for a spectral average
of

|aj (1)|2 λj (m)λj (n) .

By the multiplicativity of the Hecke eigenvalues we get an expression
for a spectral average of products

|aj (1)|2 λj (m1)λj (m2) . . . .λj (mk) .

So we automatically get a formula for a sum involving the product of
more factors.
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Recall the idea of the proof of the Kuznetsov formula:
For z ∈ H define the Poincare series

Pm (z, F ) :=
∑

γ∈Γ∞\SL2(Z)

F (Im γz) e (mReγz) ,

where F is a function on the positive real axis and m ̸= 0 is an integer.
This is an automorphic function defined in an explicit way.

Then ∫
F
Pm (z, F )uj (z)dµz = aj (m)hm,F (tj)

with a function hm,F . By the spectral theorem we see that∫
F
Pm (z, F1)Pn (z, F2)dµz

is a spectral average of the products aj (m)aj (n). So it remains to give
an elementary expression for this inner product, and it is possible to
express it as a sum of Kloosterman sums.
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A function f on H is called an automorphic function of weight 1/2 if

f(γz) = ν(γ)

(
jγ(z)

|jγ(z)|

)1/2

f(z)

for every γ =

(
a b
c d

)
∈ Γ0(4), where jγ(z) := cz+d and ν(γ) :=

(
c
d

)
ϵd,

where ϵd = 1 for d ≡ 1(4) and ϵd = i, if d ≡ −1(4).

Let V be the subspace of automorphic function of weight 1/2 which are
square integrable on a fundamental domain of Γ0(4) and cuspidal.

The hyperbolic Laplace operator of weight 1/2 is

∆1/2 = y2
(

∂2

∂x2
+

∂2

∂y2

)
− i

2
y
∂

∂x
.

A function F ∈ V is a cusp form of weight 1/2 if it is an eigenfunction of
∆1/2. If ∆1/2F =

(
−1

4 − t2
)
F , then one has the Fourier expansion

F (z) =
∑
m ̸=0

ρF (m)W 1
4 sgn(m),it (4π |m| y) e (mx) .
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For F ∈ V define the operators τ2, σ and L := τ2σ in this way:

τ2F (z) := e

(
1

8

)(
z

|z|

)−1/2

F

(
− 1

4z

)
,

σF (z) :=

√
2

4

∑
ν mod 4

F

(
z + ν

4

)
.

One can see that τ2 and σ map V into V , hence L is also a V → V
operator. It is known that L satisfies (L− 1)

(
L+ 1

2

)
= 0.

Let V + be the subspace of V with L-eigenvalue 1. This space is
called Kohnen’s subspace. It is known that a cusp form F of weight
1/2 for Γ0(4) belongs to V + if and only if ρF (m) = 0 for every integer
m ≡ 2, 3(4).

For automorphic forms F of weight 1
2 for Γ0(4) and for an odd prime p

one can define the Hecke operator Tp2 . The operators Tp2 and L form
a commouting family of self-adjoint operators V + → V +, and each of
these operators commute with ∆1/2.
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Let Fj (j = 1, 2, . . .) be an orthonormal basis of V + consisting of
common eigenfunctions of ∆ 1

2
and the Hecke operators Tp2 . Let

∆1/2Fj =

(
−1

4
− r2j

)
Fj

for j ≥ 1. Denote the Fourier coefficients of Fj by bj(m), i.e.

bj(m) = ρFj (m).

It is possible to generalize the Kuznetsov formula for sums of the form∑
j≥1

bj(m)bj(n)h (rj) + Eisenstein part.

The other side contains generalized Kloosterman sums for 4|c:

∑
d mod c, (d,c)=1

ϵd

( c
d

)
e

(
md+ nd

c

)
.
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The Kuznetsov formula has been generalized to arbitrary weights by
Proskurin. The proof uses the same idea sketched above, but uses
Poincare series of nonzero weight.

It is a further step to restrict the spectral sum to Kohnen’s subspace.
This can be done computing the action of L on the Fourier expansions at
various cusps, and combining the Proskurin formula for different cusps.

This was discussed in several papers by Biró, Ahlgren−Andersen,
Andersen−Duke and Blomer− Corbett.

However, since in weight 1/2 we have Hecke operators only for squares,
this does not give at once a formula for a sum involving the product of
more similar factors.

We show now how to give a formula for a weighted spectral sum
containing the product of four Fourier coefficients bj(m).

A summation formula of a different shape for the product of four half-
integral weight coefficients, in the case when two of the factors are first
coefficients, was proved by Blomer− Corbett.
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The idea is the following:

Instead of the Poincare series, we use another automorphic function
defined in an explicit way. Namely:
Let n, t be integers, n, t > 0, and for δ := t2 − 4n assume δ ̸= 0. Let

Γn,t =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = n, a+ d = t

}
.

The group SL2(Z) acts on this set by conjugation.
If m is a function on [0,∞) and z, w ∈ H, let

m(z, w) = m

(
|z − w|2

4ImzImw

)
,

and let
Mt,n,m(z) :=

∑
γ∈Γn,t

m (z, γz) .

This is an automorphic function with respect to SL2(Z).
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More generally: If γ =

(
a b
c d

)
∈ Γn,t, let

Qγ(X,Y ) = cX2 + (d− a)XY − bY 2.

This is a one-to-one correspondence between Γn,t and

Qδ :=
{
AX2 +BXY + CY 2 : A,B,C ∈ Z, B2 − 4AC = δ

}
with δ = t2 − 4n.
If Q ∈ Qδ with Q(X,Y ) = aX2 + bXY + cY 2, D is a fundamental
discriminant with D|δ and δ/D ≡ 0, 1 (mod 4), define

ωD (Q) =

 0 if (a, b, c,D) > 1,(
D
r

)
if (a, b, c,D) = 1,

where r is any number represented by Q with (r,D) = 1.

13



If n, t are integers, n, t > 0, and for δ := t2 − 4n we have δ ̸= 0, D is
a fundamental discriminant with D|δ and δ/D ≡ 0, 1 (mod 4), m is a
function on [0,∞) define

Mt,n,D,m(z) :=
∑

γ∈Γn,t

ωD (γ)m (z, γz) ,

where ωD (γ) := ωD (Qγ). This is also an automorphic function with
respect to SL2(Z).

Similarly to the proof of the Kuznetsov formula, we have to compute the
following quantities:
1., The spectral coefficients:∫

F
Mt,n,D,m(z)uj (z) dµz,

2., The inner products:∫
F
Mt1,n1,D1,m1Mt2,n2,D2,m2dµz.
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We start with ∫
F
Mt1,n1,D1,m1Mt2,n2,D2,m2dµz.

This is a summation over pairs

(γ1, γ2) ∈ Γn1,t1 × Γn2,t2 =: H (n1, t1, n2, t2) .

SL2(Z) acts on this set by conjugation, and we consider conjugacy
classes of pairs, similarly as in the proof of the Selberg Trace Formula.
E.g. if δ1 > 0, δ2 > 0, and H∗ (n1, t1, n2, t2) is the set of such pairs
(γ1, γ2) ∈ Γn1,t1 × Γn2,t2 for which the set of fixed points of γ1 do not
coincide with the set of fixed points of γ2, then∑

(γ1,γ2)∈H∗(n1,t1,n2,t2)

∫
F
m1 (z, γ1z)m2 (z, γ2z) dµz

equals ∑
f∈Z,f2 ̸=δ1δ2

hD1,D2 (δ1, δ2, f) I

(
δ1, δ2,

f√
δ1δ2

,m1,m2

)
,
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where I
(
δ1, δ2,

f√
δ1δ2

,m1,m2

)
is an analytic expression, and the arith-

metic part is the following generalized class number:

hD1,D2 (δ1, δ2, f) :=
∑

(Q1,Q2)

ωD1 (Q1)ωD2 (Q2) ,

the summation is over the SL2(Z)-equivalence classes of pairs (Q1, Q2)
with Qi (X,Y ) = AiX

2 +BiXY +CiY
2 such that the discriminant of Qi

is δi, and for the codiscriminant of Q1 and Q2 we have

B1B2 − 2A1C2 − 2A2C1 = f.

For D1 = D2 = 1 this is the class number h (δ1, δ2, f).

We now turn to the spectral coefficients∫
F
Mt,n,D,m(z)uj (z) dµz.

For this we have to introduce the Shimura correspondence.
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If F ∈ V + satisfies ∆1/2F =
(
−1

4 − t2
)
F and has the Fourier expansion

F (z) =
∑

m ̸=0,m≡0,1(4)

bF (m)W 1
4 sgn(m),it (4π |m| y) e (mx) ,

then for every fundamental discriminant d let

ShdF (z) :=
∑
k ̸=0

aShdF (k)W0,2it(4π |k| y)e(kx),

where

aShdF (k) :=
∑

PQ=k,P>0

|Q|
1
2

P

(
d

P

)
bF
(
dQ2

)
.

There is a d such that bj (d) ̸= 0, and with such d we define

ShimFj (z) :=
1

bj (d)
ShdFj (z) .
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It can be shown that we get the same function using any fundamental
discriminant d such that bj (d) ̸= 0, and that ShimFj is an even Hecke
normalized Maass-Hecke cusp form of weight 0 for SL2(Z).
We know that

∆0 (ShimFj) =

(
−1

4
− 4r2j

)
ShimFj ,

for any prime p > 2 we have that

Hp (ShimFj) = Shim
(
Tp2Fj

)
,

and the map j → ShimFj gives a bijection between the positive integers
and the even Hecke normalized Maass-Hecke cusp forms of weight 0
for SL2(Z).

This follows mainly from the work of Baruch−Mao.

Using the Shimura lift, we can express the spectral coefficients as
products of two weight 1/2 Fourier coefficients in the case D > 0.
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Proposition. Let n, t be positive integers such that t2 − 4n = δ ̸= 0, let
D > 0 be a fundamental discriminant with D|δ and δ/D ≡ 0, 1 (mod 4).
Let u = ShimFj for some j ≥ 1 and let ∆0u = λu, λ < 0. Write

(u, u) :=
∫
F |u(z)|2 dµz. Then for a nice test functon m we have

1

(u, u)

∫
F
Mt,n,D,m(z)u(z)dµz = δ3/4bj (D)bj

(
δ

D

)
fδ,n,m (λ) ,

where fδ,n,m can be explicitly given in terms of δ, n and m.

This follows from formulas proved for the left-hand side in my earlier
papers and from a Katok-Sarnak type formula.

The δ < 0 case of this Proposition is enough for that case of our spectral
summation formula where there are two positive and two negative
coefficeients.

Note that this is not the hardest case but the only one what I can
precisely state at the moment.
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Notations:
1., If δ ̸= 0 with δ ≡ 0, 1 (mod 4), the Zagier L-series times |δ|s/2 is:

L∗ (s, δ) := |δ|s/2 ζ (2s)

ζ (s)

∞∑
q=1

1

qs

 ∑
rmod 2q, r2≡δ(4q)

1

 .

2., For i = 1, 2 let δi < 0 be integers. Let Di > 0 be fundamental
discriminants for i = 1, 2 with Di|δi and δi/Di ≡ 0, 1 (mod 4). Let

Eδ1,δ2,D1,D2 :=
∑

(Q1,Q2)

ωD1 (Q1)ωD2 (Q2)

M (Q1)
,

where the summation is over the SL2(Z)-equivalence classes of pairs
(Q1, Q2) of quadratic forms such that the discriminant of Qi is δi,
Q1 = λQ2 with some λ ∈ Q. Here M (Q1) is the number of automorphs
of Q1.

3., If f χ (z) is a function for z ≥ 0, let Tχ (y) denote

1

288π2

∫ ∞

0

∣∣∣∣∣Γ
(
1
4 + iz

)
Γ
(
3
4 + iz

)
Γ (2iz)

∣∣∣∣∣
2

F

(
1

4
− iz,

1

4
+ iz, 1,−y

)
χ (z) dz.
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THEOREM 2 (B, 2025). For i = 1, 2 let δi < 0 be integers. LetDi > 0
be fundamental discriminants for i = 1, 2 with Di|δi and δi/Di ≡ 0, 1
(mod 4). If χ is a nice test function which is holomorphic on a large
enough strip containing the real line, then the sum of

1

12π3
δ1,D1δ1,D2L

∗ (1, δ1)L
∗ (1, δ2)χ

(
i

4

)
,

|δ1δ2|3/4
∞∑
j=1

(ShimFj , ShimFj) bj (D1) bj

(
δ1
D1

)
bj

(
δ2
D2

)
bj (D2)χ (rj)

and

1

2πi

∫
( 1

2 )

L∗ (s,D1)L
∗
(
s, δ1

D1

)
L∗ (s,D2)L

∗
(
s, δ2

D2

)
χ
(
i
s− 1

2

2

)
144ζ (2s) ζ (2− 2s)

ds

equals

Eδ1,δ2,D1,D2Tχ (0) +
∑

f∈Z,f2>δ1δ2)

hD1,D2 (δ1, δ2, f)Tχ

(
f2

δ1δ2)
− 1

)
.
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In this theorem we have two positive and two negative coefficients, and
this comes from ∫

F
Mt1,n1,D1,m1Mt2,n2,D2,m2dµz

with D1, D2 > 0, δ1, δ2 < 0.
The cases when we have more positive than negative Fourier coef-
ficients can be handled in the same way: we still take D1, D2 > 0,
and:
when we have four positive Fourier coefficients, we take δ1, δ2 > 0, if
we have three positive Fourier coefficients, we take δ1 > 0, δ2 < 0.

But if there are more negative than positive Fourier coefficients, we
have to take D1 < 0 or D2 < 0.

However for D < 0 the terms γ =

(
a b
c d

)
and adj (γ) =

(
d −b
−c a

)
cancel out, so

Mt,n,D,m(z) =
∑

γ∈Γn,t

ωD (γ)m (z, γz) = 0.
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So for D < 0 we modify Mt,n,D,m in this way: for z, w ∈ H let

h(z, w) := (z − w)
2 |z − w|−2

.

Let n, t be integers, n, t > 0, and let δ := t2 − 4n > 0. Let D < 0 be a
fundamental discriminant with D|δ and δ/D ≡ 0, 1 (mod 4), and

Nt,n,D,m(z) :=
∑

γ∈Γn,t

ωD (γ)m (z, γz)h (γz, z)

(
jγ(z)

|jγ(z)|

)2

.

THEOREM 3 (B, 2025). Let δ > 0, let D < 0 be a fundamental
discriminant with D|δ and δ/D ≡ 0, 1 (mod 4). Let n, t > 0 be integers
such that t2 − 4n = δ. Let u = ShimFj for some j ≥ 1 and let ∆0u = λu,
λ < 0. Then for any nice test functon m we have

1

(u, u)

∫
F
Nt,n,D,m(z)u(z)dµz = δ3/4bj (D)bj

(
δ

D

)
Fδ,n,m (λ) ,

where Fδ,n,m can be explicitly given in terms of δ, n and m.
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For the proof Theorem 3 the extension of the Katok-Sarnak formula
for the case of two negative Fourier coefficients is important. This
extension was proved relatively recently by Duke − Imamoglu − Tóth
and Imamoglu− Lägeler− Tóth.
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