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One main goal is to classify the unitary representations with
nontrivial Dirac cohomology.
In this talk I want to touch on an application, realizing these
representations as automorphic forms, discrete components
ocurring in L2(Γ\G ) for Γ ⊂ G an arithmetic subgroup.
Still very much in progress. See the two sets of references at the
end.
First, some background. I am not a specialist, there are many
accounts in the Physics literature. I mainly took information from
Wikipedia.



Original Dirac Operator I
One of the simplest versions of the Dirac operator is

D =
∑

∂iϵi

with the property that it is a formal square root of the Laplacian,
i.e.

D2 = ∆ =
∑

(ϵiϵj + ϵjϵi )∂ij = 2
∑

∂2i .

This forces ϵiϵj + ϵjϵi = 2δij , which makes sense in the Clifford
algebra. According to Wikipedia, the original version of the Dirac
equation, which he found staring into the fireplace, is(

A∂x + B∂y + C∂z +
i

c
∂t

)
ψ = κψ

A,B,C ,D are 4× 4 matrices, formed out of the 2× 2 Pauli
matrices,

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)



Dirac operator from Physics I
Look for D such that D2 = −

∑
∂2i . (Or D

2 =
∑

±∂2i .)

If D =
∑

ei∂i , get

e2i = −1; eiej + ejei = 0, i ̸= j .

The original Dirac equation was motivated by trying to give a
relativistic version of the Klein-Gordon equation(

∇2 − 1

c2

)
ψ =

m2c2

h2
ψ.

Dirac replaced ∇2 − 1
c2

by
(
A∂x + B∂y + C∂x +

i
cD∂t

)2
. The

requirements are

A2 = B2 = C 2 = D2 = 1,

AB + BA = 0 . . .

This leads to the Clifford algebra.



Dirac operator from Physics II

Similarly, the relativistic version of Schrödinger equation

i∂tΨ = − 1

2m
∆Ψ h := 1

requires a square root of ∆. This also leads to the Dirac equation.

(“Anonymous Quote”)

In particle physics, the Dirac equation is a relativistic wave
equation derived by British physicist Paul Dirac in 1928. In its free
form, or including electromagnetic interactions, it describes all
spin− 1/2 massive particles such as electrons and quarks for which
parity is a symmetry. It is consistent with both the principles of
quantum mechanics and the theory of special relativity, reference
[D], and was the first theory to account fully for special relativity
in the context of quantum mechanics. It was validated by



Dirac operator from Physics III

accounting for the fine details of the hydrogen spectrum in a
completely rigorous way.
The equation also implied the existence of a new form of matter,
antimatter, previously unsuspected and unobserved and which was
experimentally confirmed several years later. It also provided a
theoretical justification for the introduction of several component
wave functions in Pauli’s phenomenological theory of spin.

Many in the audience are far more expert.



Background I

If a Lie group G acts on a manifold X , then it also induces a
representation on functions on X , via

(g · f )(x) = f (g−1 · x).
Typically there is a G -invariant measure dx on X .
For example:

C∞(X ) is a smooth representation of G

L2(X ) is a unitary representation of G

A representation of G is a complex topological vector space V ,
typically complete, with a continuous G -action by linear operators.
Harmonic analysis: “decompose such representations into
irreducible representations.”

Irreducible Representations: those with no closed invariant
subspace.



Background II

Example: G = T, the circle group. The irreducible modules are
1-dimensional, spanned by functions fn : e it 7→ e int on T, n ∈ Z,
and

L2(T) =
⊕̂

n∈Z
C fn

(Fourier series).
Similarly, for G = R, the irreducible unitary representations are
1-dimensional, spanned by the functions fn : t 7→ e ixt on R, x ∈ R,
and

L2(R) =
∫ ⊕

χ∈R
C fχ dχ

(Fourier transformation).



Connection with differential equations

Let ∆ be a G−invariant differential operator on X .
Then any eigenspace of ∆ is G−invariant.

Conversely, (by some version of Schur’s Lemma) ∆ acts by scalars
on irreducible G -subspaces.

So in the presence of such an operator, decomposing the
representation is related to finding ∆-eigenspaces.

The representation of G gives extra structure to the eigenspace.



Real reductive groups

G : a real reductive Lie group (often assumed connected).

Main examples: closed (Lie) subgroups of GL(n,C), stable under
the Cartan involution Θ(g) = t ḡ−1.

E.g., SL(n,R), U(p, q), Sp(2n,R), O(p, q).

K = GΘ: maximal compact subgroup

E.g., SO(n) ⊂ SL(n,R); U(p)× U(q) ⊂ U(p, q);
U(n) ⊂ Sp(2n,R), O(p)× O(q) ⊂ O(p, q)
and the various real forms of the exceptional groups.
An important set of examples are the complex groups viewed as
real groups.



Cohomology of Discrete Groups I

- G the real points of a linear algebraic reductive connected
group.

- g0 := Lie(G ), θ a Cartan involution, g := (g0)C, g0 = k0 + p0,
K the maximal compact subgroup, k0 := Lie(K ), g = k+ p.

- A (g,K ) module (π,H) is called unitary, if H admits a
g−invariant positive hermitian form.

- Γ ⊂ G a discrete cocompact subgroup. The theory of
automorphic forms deals with the decomposition
L2(Γ\G ) =

⊕
mππ. Let X := Γ\G/K . Then

H i (Γ) = H i (X ) =
⊕

mπH
i (g,K , π).



Cohomology of Discrete Groups II

The multiplicities mπ are very hard to compute. In order to get
information about Γ, one approach is to study H i (g,K , π) for π
unitary.

Problem: Classify all unitary representations with nontrivial
(g,K )−cohomology.
For complex groups, this was solved by Enright, and then
generalized to real groups by Vogan-Zuckerman.
In the real case the answer is that π = Rs

q(Cλ), where

- q = l+ u is a θ−stable parabolic subalgebra, s = dim u ∩ p,

- Ri
q is cohomological induction introduced by Parthasarathy

and Zuckerman.

- Cλ is a unitary character such that Rs
q(Cλ) has infinitesimal

character the same as the trivial representation.

H i (g,K , π) = HomK [∧ip, π] is computable explicitly for such
modules.



The index of the Dirac operator I

We review a basic tool to construct discrete series, the index of the
Dirac operator. Atiyah-Schmid, Schmid, and Parthasarthy used it
to construct Discrete Series.
It is always easier to study representations of the Lie algebra, and
then derive properties of the representations of the Lie group. For
real reductive groups, these are the (g,K)−modules.

Following Harish-Chandra, one associates a (g,K )−module to each
representation of the group. Let V be an admissible representation
V of G , i.e., dimHom(Vδ,V ) <∞ for all irreducible
K -representations Vδ.

Let VK be the space of K -finite vectors in V . These vectors are
smooth i.e. one can differentiate the group action to get an action
of the Lie algebra. g = (g0)C, the complexification of the real Lie
algebra acts automatically.



Definition
A (g,K )−module is a vector space V , with a Lie algebra action of
g and a locally finite action of K , which are compatible, i.e.,
induce the same action of k0 := Lie(K ). (If K is disconnected, one
requires also that the action g⊗ V → V is K−equivariant). Such
a V can be decomposed under K as

V =
⊕
δ∈K̂

mδVδ.

V is called a Harish-Chandra module if it is finitely generated and
all mδ <∞.



Casimir element and Infinitesimal Character

The Casimir Element, Casg, in the center of the enveloping algebra
U(g), is defined as follows:
Fix a nondegenerate invariant symmetric bilinear form B on g.
Take dual bases bi , di of g with respect to B. Write

Casg =
∑

bidi .

This is an element of the center Z (g) of U(g) which act as scalars
on irreducible modules. This defines the infinitesimal character of a
module M, χM : Z (g) → C.

Harish-Chandra proved that Z (g) ∼= P(h∗)W , so infinitesimal
characters correspond to h∗/W .

(h is a Cartan subalgebra of g; in examples, the diagonal matrices.
W is the Weyl group of (g, h); it is a finite reflection group.)



The Clifford algebra for G

Let g = k⊕ p be the Cartan decomposition.

(k and p are the ±1 eigenspaces of the Cartan involution;

k is the complexified Lie algebra of the maximal compact subgroup
K of G .)

Let C (p) be the Clifford algebra of p with respect to B:

the associative algebra with 1, generated by p, with relations

xy + yx + 2B(x , y) = 0.



The Dirac operator for G

Let bi be any basis of p; let di be the dual basis with respect to B.
Dirac operator:

D =
∑
i

bi ⊗ di ∈ U(g)⊗ C (p)

D is independent of bi and K -invariant.



(g,K )−cohomology I
There is extensive work to realize representations in the cuspidal
spectrrum of L2(Γ\G ) using (g,K )−cohomology or the index of
the Dirac operator. A few names:
Clozel, DeGeorge-Wallach, Labesse, Borel-Labesse-Schwermer,
Speh, Rohlfs-Speh, Wallach ... B–Speh also proved a version.



(g,K )−cohomology II

The main idea is to use the Arthur-Selberg trace formula. This is
an equality between a RHS and a LHS akin to the Poisson
summation formula; a RHS, sum of traces Trπ(f ) equals a LHS
which is a sum of orbital integrals.
For the case when Γ\G is compact,∑

mπΘπ(f ) =
∑

vol(Γγ\Gγ)

∫
Gγ\G

f (gγg−1) dg .

Theorem
Let τ be a finite order automorphism such that G τ is equal rank.
Then there exist irreducible representations with nontrivial
Lefschetz numbers of G ⋉ ⟨τ⟩ which are cuspidal automorphic.

The automorphism τ induces an automorphism of H i (g,K ) and
the Lefschetz number is the Euler characteristic of the trace of this
element.



(g,K )−cohomology III

This result holds in greater generality, B-Pandzic, namely there
exist such representations with nontrivial Dirac cohomology.
The results about (g,K )−cohomology can be deduced as a
consequence of the ones about Dirac cohomology.
The group need no be equal rank, and the infinitesimal character
does not need to be integral or even regular.
The Arthur version of the trace formula is valid in the general
setting of vol(Γ\G ) finite. The “simple version of the twisted trace
formula” as in Borel-Labesse-Schwermer and Kottwitz provides a
crucial simplifications of the right hand side of the AS-trace
formula. At least formally it coincides with the cocompact case,
but many more terms are zero when evaluated on certain functions
called pseudo-coefficients.
We construct ”pseudo-coefficients” for which Trπ(f ) ̸= 0 only for
representations with nonzero twisted index, and for which the right
hand side is computable and shown to be nonzero.



Dirac cohomology
Motivated by the Dirac inequality (see below) and its uses to
compute spectral gaps, Vogan introduced the notion of Dirac
Cohomology.

Let M be an admissible (g,K )-module. Let S be a Spin module for
C (p); it is constructed as S =

∧
p+ for p+ ⊂ p maximal isotropic.

Then D acts on M ⊗ S .

Dirac cohomology of M:

HD(M) = KerD/(ImD ∩ KerD)

HD(M) is a module for the spin double cover K̃ of K . It is
finite-dimensional if M is of finite length.

If M is unitary, then D is self adjoint w.r.t. an inner product. So

HD(M) = KerD = KerD2,

and D2 ≥ 0 (Dirac inequality).



Dirac Inequality I

The adjoint representation of K on p lifts to Ad : K̃ −→ Spin(p0),
where K̃ is the spin double cover of K . The Dirac operator is
defined as

D =
∑
i

bi ⊗ di ∈ U(g)⊗ C (p),

where C (p) denotes the Clifford algebra of p with respect to the
form B, bi is a basis of p and di is the dual basis with respect to
B. D is independent of the choice of the basis bi and K−invariant.
It satisfies

D2 = −(Casg⊗1 + ∥ρg∥2) + (∆(Cask) + ∥ρk∥2).

In this formula, due to Parthasarathy [P1],

- Casg and Cask are the Casimir operators for g and k
respectively,

- h = t+ a is a fundamental θ-stable Cartan subalgebra with
compatible systems of positive roots for (g, h) and (k, t),



Dirac Inequality II
- ρg and ρk are the corresponding half sums of positive roots,

- ∆ : k → U(g)⊗ C (p) is given by ∆(X ) = X ⊗ 1 + 1⊗ α(X ),
where α is the action map k → so(p) composed with the usual
identifications so(p) ∼=

∧2(p) ↪→ C (p).

If π is a (g,K )−module, then D induces an operator

D = Dπ : π ⊗ Spin −→ π ⊗ Spin,

where Spin is a spin module for C (p). If π is unitary, then π ⊗ Spin
admits a K−invariant inner product ⟨ , ⟩ such that D is self
adjoint with respect to this inner product. It follows that D2 ≥ 0
on π ⊗ Spin. Using the above formula for D2, we find that

Casg + ∥ρg∥2 ≤ ∆(Cask) + ∥ρk∥2

on any K−type τ occurring in π ⊗ Spin.



Dirac Inequality III

Another way of putting this is

∥Λ∥2 ≤ ∥τ + ρk∥2, (1)

for any τ occurring in π ⊗ Spin, where Λ is the infinitesimal
character of π.
In the case of an equal rank group (rankG = rankK ),
Spin(p) = S+ ⊕ S−. The Dirac operator satisfies

D : X ⊗ Spin± −→ X ⊗ Spin∓.

The index is I (D,X ) = KerD+ − CokerD+. This is zero in the
unequal rank case.
The aim is to find a framework that gives nontrivial results in the
unequal rank case. A main example are the complex groups viewed
as real groups.



Vogan’s Conjecture

Let h = t⊕ a be a fundamental Cartan subalgebra of g. View
t∗ ⊂ h∗ via extension by 0 over a.

The following was conjectured by Vogan in 1997, and proved by
Huang-Pandžić in 2002.

Theorem
Assume M has an infinitesimal character, and HD(M) contains a
K̃ -type Eτ of highest weight τ ∈ t∗. Let h = t+ a be a
fundamental θ−stable Cartan subalgebra. The infinitesimal
character is a W−orbit of a semisimple element Λ ∈ h∗.

Then there is w ∈ W such that wΛ |t= τ + ρk, and wΛ |a= 0.



Motivation

▶ unitarity: Dirac inequality and its improvements.

▶ irreducible unitary M with HD ̸= 0 are interesting (discrete
series, Aq(λ) modules, unitary highest weight modules, some
unipotent representations...) They should form a nice part of
the unitary dual.

▶ HD is related to classical topics like generalized Weyl character
formula, generalized Bott-Borel-Weil Theorem, construction
of discrete series, multiplicities of automorphic forms

▶ There are nice constructions of representations with HD ̸= 0;
e.g., Parthasarthy and Atiyah-Schmid constructed the discrete
series representations using spin bundles on G/K .



Twisted Dirac Index I

We need a cover of K ,

K † := {(k, g) ∈ K × Pin(p) | Ad(k) |p= p(g)}

for the usual projection p : Pin(p) −→ O(p). Then X ⊗ Spin is an
(U(g)⊗ C (p),K †)−module via:

(u ⊗ c) · (x ⊗ c) = ux ⊗ cs,

(k , g) · (x ⊗ s) = kx ⊗ gsg−1.

Let γ be an automorphism of (U(g)⊗ C (p),K †) i.e.

1. γ consists of an automorphism γg of U(g)⊗ C (p) and an
automorphism γK of K †;



Twisted Dirac Index II

2. γ is compatible with the action of K † on U(g)⊗ C (p) in the
sense that

γg((k , g)(u ⊗ c)) = γK (k , g)γg(u ⊗ c)

for (k, g) ∈ K † and u ⊗ c ∈ U(g)⊗ C (p);

3. the differential of γK coincides with the restriction of γg to k∆.

We assume that X ⊗ S has a compatible action of γ, i.e. there is
an operator π(γ) on X ⊗ S such that

π(γ)π(u ⊗ c)π(γ)−1 = π(γg(u ⊗ c)), u ⊗ c ∈ U(g)⊗ C (p);

π(γ)π(k)π(γ)−1 = π(γK (k)), k ∈ K †.

We assume that γ satisfies

γ(D) = −D,



Twisted Dirac Index III

so π(γ) and π(D) anticommute. Then γ preserves HD(X ). If we

denote the fixed points of γ in K † by K †
γ , then K †

γ preserves the
above decomposition, and we define the γ−index of D on X ⊗ S
as the function

χX
γ (k) = tr(γk;HD(X )) k ∈ K †

γ . (2)

Theorem

Tr(kγ : HD(X )) = Tr(kγ : X ⊗ S)



Sketch of Proof I

We may consider HD(X ) as a K ⋄ := K † ⋉ ⟨τ⟩−submodule of
X ⊗ S ; namely, KerD and KerD ∩ ImD are K ⋄-submodules of
X ⊗ S , and we identify HD(X ) with a K ⋄− invariant direct
complement of KerD ∩ ImD in KerD. Recall that HD(X ) is finite
dimensional; see the paragraph below Definition 3.2.3 in [HP2].
We decompose X ⊗ S into the direct sum of finite-dimensional
eigenspaces (X ⊗ S)λ for D2. Each of these eigenspaces is
invariant under the action of kγ, since D2 commutes with kγ. If
λ ̸= 0, then D : (X ⊗ S)λ → (X ⊗ S)λ is a K †−isomorphism. So if
E ⊆ (X ⊗ S)λ is an irreducible K †−submodule, then F = D(E ) is
another irreducible K †−submodule of (X ⊗ S)λ. There are two
cases: either F = E , or F ̸= E ; in the latter case E ∩ F = 0. Since
K ⋄ = K † ⋉ ⟨τ⟩ is compact, E and F are unitary with respect to an
appropriate inner product. So we can decompose E and F into
eigenspaces for kγ:

E =
⊕

Eµ; F =
⊕

Fµ,



Sketch of Proof II
for µ ∈ C satisfying |µ| = 1. In particular, µ ̸= 0, and
Eµ ∩ E−µ = 0 for every µ that appears.
Since D anticommutes with kγ, it must send Eµ isomorphically
onto F−µ for each µ. It follows that

tr(kγ; F ) = − tr(kγ; E ). (3)

Thus,

▶ If E ̸= F , (3) implies that the trace of kγ is 0 on
E ⊕ F ⊂ X ⊗ S .

▶ If E = F , (3) implies that the trace of kγ is 0 on E .

In conclusion, the trace of kγ is 0 on (X ⊗ S)λ for any λ ̸= 0.
The eigenspace (X ⊗ S)0 = KerD2 can be decomposed as

KerD2 = HD(X )⊕ (KerD ∩ ImD)⊕ Y ,

with D sending Y isomorphically to KerD ∩ ImD. Thus the trace
of kγ is 0 on (KerD ∩ ImD)⊕ Y , and the proposition follows.



Examples I

Equal Rank Case: This is the ordinary Dirac index in the equal
rank case. Let h0 = t0 be the compact Cartan subalgebra in g0. In
this case dim p is even, so there is only one spin module S , and it
is a graded module for C (p) = C 0(p)⊕ C 1(p), i.e., S = S+ ⊕ S−,
with S± preserved by C 0(p) and interchanged by C 1(p). (Recall
that S can be constructed as

∧
p+ with p+ a maximal isotropic

subspace of p, and that one can take S+ =
∧even p+ and

S− =
∧odd p+.)

Recall that θ denotes the Cartan involution of g. It induces
− Id ∈ O(p0), and so gives rise to two elements in Pin(p0). It is
easy to see that these elements are

±Z1Z2 . . .Zs ∈ C (p0),

where Z1, . . . ,Zs is any orthonormal basis of p0. We fix one of
these two elements, and call it again θ. In this way θ acts on S ,
and one easily checks that S = S+ ⊕ S− is the decomposition into



Examples II

eigenspaces of θ. Moreover, we can make the choice of θ
compatible with the choice of S±, so that θ is 1 on S+ and −1 on
S−. Furthermore, we can extend the automorphism θ = − Id of p0
to an automorphism of C (p), and this automorphism is exactly the
conjugation by the element θ ∈ C (p). (This automorphism is in
fact equal to the sign automorphism of C (p).)
We now consider the automorphism γ of (U(g)⊗ C (p),K †)
constructed from the automorphisms γ1 = Id of (g,K ) and γ2 = θ
of C (p). We conclude

I (X ) = X ⊗ S+ − X ⊗ S−. (4)

If K †
γ = K †, i.e. the natural map from K † to Pin(p0) maps K † into

Spin(p0), then I (X ) is the usual index as in [P1] and the work of
Hecht-Schmid and Atiyah-Schmid.



Examples III

Unequal Rank Case: If g and k do not have equal rank, then the
above usual notion of index is trivial. Instead, we consider the
extended group

G+ = G ⋊ {1, θ},

with θ acting on G by the Cartan involution, and with θ2 = 1 ∈ G .
The maximal compact subgroup of G+ is

K+ = K × {1, θ}.

A (g,K+)−module (π,X ) can be thought of as a (g,K )−module
with an additional action of θ by π(θ), which satisfies

π(θ)π(k)π(θ) = π(k), k ∈ K ;

π(θ)π(ξ)π(θ) = π(θ(ξ)), ξ ∈ g.
(5)

We now consider the automorphism γ of (U(g)⊗ C (p),K †) built
from the automorphisms γ1 = θ of (g,K ) and γ2 = Id of C (p).



Examples IV

Here K † still denotes the Pin double cover of K , not of K+. The
compatibility condition is now trivial, and so is the fact that γ is
an involution satisfying γ(D) = −D. It is also clear that in this

case K †
γ = K †. Moreover, γ acts on X ⊗ S whenever X is a

(g,K+)−module.
We can now consider the γ−index of D on X ⊗S , which we denote
by Iθ(X ) in the present case, and call the twisted Dirac index of X .
In particular, we have the following equality of virtual K †−modules

Iθ(X ) = X+ ⊗ S − X− ⊗ S , (6)

where X± denote the ±1 eigenspaces of θ on X .

This setting makes sense in the equal rank case as well. Since
θ = Ad k0 is inner, any (g,K )−module extends naturally to an
G+ = G ⋊ {1, θ}−module via π(θ) = π(k0). The resulting twisted
index is not substantially different from the usual notion of index.



Examples V

Namely let k̃0 = (k0, θ) ∈ K †, where θ ∈ Spin(p0) is the top degree

element acting by ±1 on S±. Then k̃0 is in K †
γ .

Let χ1 (respectively χ2) be the function defined by (2) for the
ordinary (respectively twisted) Dirac index. These functions are

both defined for any k ∈ K †
γ . Since k̃20 acts as the identity on S ,

we have

χ1(k̃0k) = tr(k̃0k;X ) tr(k̃0kθ; S) = tr(k̃0k ;X ) tr(k̃20k ;S) =

= tr(k̃0k;X ) tr(k ; S) = χ2(k).

So we see that the twisted Dirac index χ2 is the same as the
ordinary Dirac index χ1 with the argument translated by k̃0.



THANK YOU HOSTS AND ORGANIZERS
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[BP] D. Barbasch, P. Pandžić Dirac cohomology and unipotent
representations of complex groups Noncommutative
Geometry and Global Analysis, Alain Connes, Alexander
Gorokhovsky etc, Contemporary Mathematics, vol. 546,
(2011), pp. 22-43

[BV] D. Barbasch, D. Vogan, Unipotent representations of
complex semisimple groups, Ann. of Math. 121 (1985),
41–110.

[BS] D. Barbasch,B. Speh, Cuspidal representations for reductive
groups, arXiv:0810.0787

[BW] D. Barbasch, D. Wong, Dirac Series for E8,
arXiv:2305.03254



[BWa] A. Borel, N.R. Wallach, Continuous cohomology, discrete
subgroups, and representations of reductive groups, second
edition, Mathematical Surveys and Monographs 67,
American Mathematical Society, Providence, RI, 2000.

[D] P. Dirac, Principles of quantum Mechanics, International
Seires of Monographs on Physics, (4th edition) Oxford
University Press, p.255

[E] T. Enright, Relative Lie algebra cohomology and unitary
representations of complex Lie groups, Duke Math. J. 46
(1979), no. 3, 513–525.

[H] R. Howe Transcending classical invariant theory Journal of
the AMS, vol 2, number 3, 1989, 535-552

[HKP] J.-S. Huang, Y.-F. Kang, P. Pandžić, Dirac cohomology of
some Harish-Chandra modules, Transform. Groups 14
(2009), no. 1, 163–173.
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