Tatuzawa's theorem for Rankin–Selberg *L*-functions

(joint work with Jesse Thorner)

Gergely Harcos

11 August 2025 Aarhus Automorphic Forms Conference Aarhus University

Standard *L*-functions and Rankin–Selberg *L*-functions

Cuspidal representations

Let \mathfrak{F}_n be the set of unitary cuspidal automorphic representations of GL_n over a fixed number field F.

Let $\mathfrak{F}_n^* \subset \mathfrak{F}_n$ be the subset of representations in \mathfrak{F}_n whose central character is trivial on the diagonally embedded positive reals.

Each $\pi \in \mathfrak{F}_n$ gives rise to a standard *L*-function $L(s,\pi)$, which has similar properties as the product of n Hecke L-functions (over F). In fact the product of n Hecke L-functions is the L-function of an isobaric automorphic representation of GL_n over F.

Each $(\pi, \rho) \in \mathfrak{F}_n \times \mathfrak{F}_m$ gives rise to a Rankin–Selberg L-function $L(s, \pi \times \rho)$, which has similar properties as the product of nm Hecke L-functions. Langlands functoriality predicts that $L(s, \pi \times \rho)$ is a product of standard L-functions. Hoffstein–Ramakrishnan (1995) used this hypothesis to prove the non-existence of Landau–Siegel zeros other than those of Hecke L-functions.

Twisting and normalizing cuspidal representations

GL_1 -twists

 \mathfrak{F}_1 is the abelian group of unitary Hecke characters acting on \mathfrak{F}_n as follows. For each $\pi \in \mathfrak{F}_n$ and $\chi \in \mathfrak{F}_1$, we denote by $\pi \otimes \chi \in \mathfrak{F}_n$ the representation $g \mapsto \pi(g)\chi(\det g)$ embedded into the cuspidal subspace of $L^2(\mathrm{GL}_n(F)\backslash\mathrm{GL}_n(\mathbb{A}_F))$ in the usual way.

A special case of this action results in the shifting of the L-function by purely imaginary numbers $it\ (t\in\mathbb{R})$:

$$L(s+it,\pi) = L(s,\pi \otimes |\cdot|^{it}),$$

 $L(s+it,\pi \times \rho) = L(s,\pi \times (\rho \otimes |\cdot|^{it})).$

There is a unique decomposition $\pi = \pi^* \otimes |\cdot|^{it_{\pi}}$ with $\pi^* \in \mathfrak{F}_n^*$ and $t_{\pi} \in \mathbb{R}$, and similarly for ρ . It follows that

$$L(s,\pi) = L(s + it_{\pi}, \pi^*),$$

 $L(s,\pi \times \rho) = L(s + it_{\pi} + it_{\rho}, \pi^* \times \rho^*).$

Nonvanishing of Rankin–Selberg *L*-functions

Establishing zero-free regions and lower bounds for automorphic *L*-functions has a venerable history: Dirichlet (1837), Riemann (1859),

Hadamard (1896), de la Vallée Poussin (1896 & 1899), Gronwall (1913), Landau (1918), Titchmarsh (1930),

Page (1935), Siegel (1935), Tatuzawa (1951), Jacquet-Shalika (1976), Shahidi (1981), Moreno (1985),

Hoffstein-Lockhart (1994), Goldfeld-Hoffstein-Lieman (1994), Hoffstein-Ramakrishnan (1995), Banks (1997),

Ramakrishnan-Wang (2003), Iwaniec-Kowalski (2004), Sarnak (2004), Gelbart-Lapid (2006), Goldfeld-Li (2018),

Humphries (2019), Jiang-Lü-Thorner-Wang (2021), Luo (2023), Zhang (2023), Wattanawanichkul (2025).

Theorem (Brumley 2006–2019, Humphries–Thorner 2022)

There exists $c_1 = c_1(n, m, [F : \mathbb{Q}]) > 0$ with the following property. If $(\pi, \rho) \in \mathfrak{F}_n^* \times \mathfrak{F}_m^*$, then $L(\sigma + it, \pi \times \rho)$ has no zero in the region

$$\sigma \geqslant 1 - c_1(C(\pi)C(\rho))^{-n-m}(|t|+1)^{-nm}$$
.

Moreover, if $\pi=\widetilde{\pi}$ or $\rho=\widetilde{\rho}$ or $\rho=\widetilde{\pi}$, then $L(\sigma+it,\pi\times\rho)$ has at most one zero (necessarily real and simple) in the region

$$\sigma \geqslant 1 - c_1/\log(C(\pi)C(\rho)(|t|+3)).$$

If the exceptional zero exists, then $(\pi, \rho) = (\widetilde{\pi}, \widetilde{\rho})$ or $\rho = \widetilde{\pi}$.

A new zero-free region

We extended the celebrated lower bound of Siegel (1935) to all GL_1 -twists of general $\operatorname{GL}_n \times \operatorname{GL}_m$ Rankin–Selberg *L*-functions.

Theorem (Harcos-Thorner 2025)

Let $(\pi, \rho) \in \mathfrak{F}_n \times \mathfrak{F}_m$. For all $\varepsilon > 0$, there exists an ineffective constant $c_2 = c_2(\pi, \rho, \varepsilon) > 0$ such that if $\chi \in \mathfrak{F}_1$, then

$$|L(\sigma, \pi \times (\rho \otimes \chi))| \geqslant c_2 C(\chi)^{-\varepsilon}, \qquad \sigma \geqslant 1 - c_2 C(\chi)^{-\varepsilon}.$$

Remark

It follows that in fact $|L(\sigma+it,\pi\times(\rho\otimes\chi))|\geqslant c_3C(\chi)^{-\varepsilon}(|t|+1)^{-\varepsilon}$ for $\sigma\geqslant 1-c_3C(\chi)^{-\varepsilon}(|t|+1)^{-\varepsilon}$, with some $c_3=c_3(\pi,\rho,\varepsilon)>0$.

The proof relies on the group structure of \mathfrak{F}_1 , and it utilizes an auxiliary *L*-function with nonnegative coefficients that extends the constructions of de la Vallée Poussin (1899) and Siegel (1935).

An analogue of the Siegel-Walfisz theorem

The new zero-free region allowed us to prove an analogue of the Siegel–Walfisz theorem for Rankin–Selberg L-functions. Here is a particular case over the rational field $F=\mathbb{Q}$ for simplicity.

Theorem (Harcos–Thorner 2025)

For $(\pi, \rho) \in \mathfrak{F}_n \times \mathfrak{F}_m$, let $\Lambda_{\pi \times \rho}(k)$ denote the k-th Dirichlet coefficient of $-L'(s, \pi \times \rho)/L(s, \pi \times \rho)$. Moreover, let

$$\mathcal{M}_{\pi \times \rho}(x) = egin{cases} x^{1-it}/(1-it), &
ho = \widetilde{\pi} \otimes |\cdot|^{it} \\ 0, & \textit{otherwise} \end{cases}$$

Let A > 0 be arbitrary. Let $q \leq (\log x)^A$ be a positive integer coprime to the conductors of π and ρ , and let a (mod q) be a reduced residue class modulo q. Then

$$\sum_{\substack{k \leqslant x \\ k \equiv a \ (\text{mod } q)}} \Lambda_{\pi \times \rho}(k) = \frac{\mathcal{M}_{\pi \times \rho}(x)}{\varphi(q)} + O_{\pi,\rho,A}\left(\frac{x}{(\log x)^A}\right).$$

A generalization of Tatuzawa's theorem (1 of 2)

The theorem of Siegel (1935) can be made "almost effective":

Theorem (Tatuzawa 1951)

For every $\varepsilon>0$, there exists a primitive quadratic Dirichlet character ψ such that if $\chi\neq\psi$ is any other primitive quadratic Dirichlet character, then

$$L(1,\chi) > \frac{\varepsilon}{10}C(\chi)^{-\varepsilon}.$$

Inspired by this result, Jesse Thorner and I proved that among all the GL_1 -twists of a given Rankin–Selberg \emph{L} -function, all but one admits a good effective zero-free interval on the real axis.

Moreover, if the exceptional GL_1 -twist exists, then it has at most one exceptional zero (necessarily simple) on the real axis.

A generalization of Tatuzawa's theorem (2 of 2)

Theorem (Harcos-Thorner 2025+)

Let $(\pi, \rho, \chi) \in \mathfrak{F}_n \times \mathfrak{F}_m \times \mathfrak{F}_1$ and $\varepsilon > 0$. There exist an effectively computable constant $c_4 = c_4(n, m, [F:\mathbb{Q}], \varepsilon) > 0$ and a character $\psi = \psi_{\pi, \rho, \varepsilon} \in \mathfrak{F}_1$ such that if $L(s, \pi \times (\rho \otimes \chi))$ differs from $L(s, \pi \times (\rho \otimes \psi))$, then

$$L(\sigma, \pi \times (\rho \otimes \chi)) \neq 0, \qquad \sigma \geqslant 1 - c_4(C(\pi)C(\rho)C(\chi))^{-\varepsilon}.$$

Moreover, $L(s, \pi \times (\rho \otimes \psi))$ has at most one zero (necessarily simple) in the interval $\sigma \geqslant 1 - c_4(C(\pi)C(\rho)C(\psi))^{-\varepsilon}$.

Corollary

If $(\pi, \rho) \in \mathfrak{F}_n \times \mathfrak{F}_m$ and $\varepsilon > 0$, then $L(\sigma + it, \pi \times \rho)$ has at most one zero (necessarily simple) in the region

$$\sigma \geqslant 1 - c_4(C(\pi)C(\rho)D_F(|t|+3)^{[F:\mathbb{Q}]})^{-\varepsilon}.$$

The Key Proposition

The proof relies on the observation that the desired zero-free interval can be established under some auxiliary assumptions.

Key Proposition

Let $(\pi, \rho, \chi) \in \mathfrak{F}_n \times \mathfrak{F}_m \times \mathfrak{F}_1$ and $\varepsilon \in (0, 1)$. Put

$$Q = Q(\pi, \rho, \chi) = (C(\pi)C(\rho))^{2(n+m)}C(\chi)^{(n+m)^2}.$$

Assume that $L(s, \pi \times (\rho \otimes \chi))$ is entire, and one of the following two conditions holds true:

- **1** $L(s, \pi \times \widetilde{\pi})$ has a zero in the interval $[1 \varepsilon/16, 1)$.
- **2** $L(s, \pi \times \rho)$ is entire and has a zero in the interval $[1 \varepsilon/16, 1)$. Furthermore, if $\pi \otimes \chi^* = \pi$ or $\rho \otimes \chi^* = \rho$, then $|t_\chi| \geqslant Q^{-\varepsilon/64}$.

There exists an effectively computable constant $c_5 = c_5(n, m, [F:\mathbb{Q}], \varepsilon) > 0$ such that

$$L(\sigma, \pi \times (\rho \otimes \chi)) \neq 0, \qquad \sigma \geqslant 1 - c_5 Q^{-\varepsilon}.$$

Outline of the proof (1 of 3)

For ease of notation, we shall seek zero-free intervals of the form

$$\sigma \geqslant 1 - c_6(C(\pi)C(\rho)C(\chi)^{2n+2m})^{-\varepsilon},$$

where $\varepsilon \in (0,1)$. We shall apply the Key Proposition with

$$\varepsilon' = \frac{\varepsilon}{2(n+m)}$$

in the role of ε , and possibly some (ρ', χ') in the role of (ρ, χ) .

If $L(s,\pi\times\widetilde{\pi})$ has a zero in the interval $[1-\varepsilon'/16,1)$, then we are done by the Key Proposition and the standard zero-free region for $L(s,\pi\times\widetilde{\pi})$ established by Humphries–Thorner (2022). Otherwise, $L(s,\pi\times\widetilde{\pi})$ has no exceptional zero, and we can focus on $\chi\in\mathfrak{F}_1$ such that $L(s,\pi\times(\rho\otimes\chi))$ is entire. Let S be the set of such χ .

If, for all $\chi \in S$, the *L*-function $L(s, \pi \times (\rho \otimes \chi))$ has no zero in $[1 - \varepsilon'/16, 1)$, then we are done. Otherwise, we can fix $\lambda \in S$ with minimal analytic conductor such that $L(s, \pi \times (\rho \otimes \lambda))$ has a zero in $[1 - \varepsilon'/16, 1)$.

Outline of the proof (2 of 3)

After fixing $\lambda \in S$ as above, we can assume that $C(\chi) \geqslant C(\lambda)$, for otherwise we are done. We make the change of variables

$$\rho' = \rho \otimes \lambda, \qquad \chi' = \chi \overline{\lambda}.$$

Note that $L(s, \pi \times \rho')$ is entire and has a zero in $[1 - \varepsilon'/16, 1)$. Moreover, $L(s, \pi \times (\rho' \otimes \chi')) = L(s, \pi \times (\rho \otimes \chi))$ is entire.

We apply the Key Proposition with $(\rho', \chi', \varepsilon')$ in place of $(\rho, \chi, \varepsilon)$. Accordingly, we work with $Q = Q(\pi, \rho', \chi')$, which satisfies

$$(C(\pi)C(\rho\otimes\lambda)C(\rho\otimes\chi))^{n+m}< Q<(C(\pi)C(\rho))^{2(n+m)}C(\chi)^{4(n+m)^2}.$$

If the twist equivalence condition of the Key Proposition is satisfied for (ρ',χ') in place of (ρ,χ) , then we are done. Otherwise,

$$L(s, \pi \times (\rho \otimes \chi)) = L(s + it_{\chi} - it_{\lambda}, \pi \times (\rho \otimes \lambda)),$$

where
$$|t_{\chi} - t_{\lambda}| < (C(\pi)C(\rho \otimes \lambda)C(\rho \otimes \chi))^{-\varepsilon/128}$$
.

Outline of the proof (3 of 3)

So every zero of $L(s, \pi \times (\rho \otimes \chi))$ in the interval

$$\sigma \geqslant 1 - c_6(C(\pi)C(\rho)C(\chi)^{2n+2m})^{-\varepsilon}$$

yields a zero $\sigma + i(t_{\chi} - t_{\lambda})$ very close to 1 of $L(s, \pi \times (\rho \otimes \lambda))$.

Moreover, we can recover the twist $L(s, \pi \times (\rho \otimes \chi))$ and its zero $\sigma \approx 1$ from the zero $\sigma + i(t_{\chi} - t_{\lambda}) \approx 1$ of $L(s, \pi \times (\rho \otimes \lambda))$.

However, by a Goldfeld–Hoffstein–Lieman type argument, $L(s, \pi \times (\rho \otimes \lambda))$ has at most 1 such zero, with multiplicity:

Lemma

There exists a constant $c_7 = c_7(n,m) > 0$ such that the product

$$L(s, \pi \times \widetilde{\pi})L(s, \rho \times \widetilde{\rho})L(s, \pi \times (\rho \otimes \lambda))L(s, \widetilde{\pi} \times (\widetilde{\rho} \otimes \overline{\lambda}))$$

has at most 2 zeros (counted with multiplicity) in the region

$$\sigma\geqslant 1-rac{c_7}{\log(C(\pi)C(
ho\otimes\lambda))} \quad ext{and} \quad |t|\leqslant rac{c_7}{\log(C(\pi)C(
ho\otimes\lambda))}.$$

Hoffstein-Ramakrishnan & Goldfeld-Hoffstein-Lieman

Let $\Pi=\pi_1\boxplus\cdots\boxplus\pi_\ell$ be an isobaric sum of unitary cuspidal automorphic representations.

Lemma (Hoffstein-Ramakrishnan 1995)

The logarithm of $L(s, \Pi \times \widetilde{\Pi})$ has nonnegative Dirichlet coefficients.

Lemma (after Goldfeld-Hoffstein-Lieman 1994)

There exists an absolute and effectively computable constant $c_8>0$ with the following property. Let r be the order of the pole of $L(s,\Pi\times\widetilde\Pi)$ at s=1. Let $E(\Pi\times\widetilde\Pi)$ be the logarithm of $C(\Pi\times\widetilde\Pi)$ plus the sum of reciprocal imaginary parts of the poles of $L(s,\Pi\times\widetilde\Pi)$ in the upper half-plane, counted with multiplicity. Then $L(s,\Pi\times\widetilde\Pi)$ has at most r zeros (counted with multiplicity) in the region

$$\sigma\geqslant 1-rac{c_8}{r E(\Pi imes\widetilde{\Pi})} \qquad ext{and} \qquad |t|\leqslant rac{c_8}{\sqrt{r} E(\Pi imes\widetilde{\Pi})}.$$

Proof of the Key Proposition, generic case (1 of 2)

Generic case: $L(s, \pi \times (\rho \otimes \chi^2))$ is entire in condition **2**.

We use the auxiliary *L*-function $L(s, \Pi \times \widetilde{\Pi})$, where Π is one of:

- $\bullet \ \Pi = \pi \boxplus \widetilde{\rho} \otimes \overline{\chi}$

Hence $L(s,\Pi\times\widetilde{\Pi})$ has nonnegative Dirichlet coefficients, and it has a zero $\beta\in[1-\varepsilon/16,1)$. We apply Perron's formula and the Residue Theorem to the meromorphic function

$$s \mapsto L(s, \Pi \times \widetilde{\Pi}) x^{s-\beta} \Gamma(s-\beta),$$

where $x\geqslant 1$ is a parameter. Each residue can be bounded in terms of $|L(1,\pi\times(\rho\otimes\chi))|$, and after optimizing $x\geqslant 1$, we conclude that

$$|L(1,\pi\times(\rho\otimes\chi))|\gg_{n,m,[F:\mathbb{Q}],\varepsilon}(1-\beta)^4Q^{-\varepsilon/2}.$$

Of course, this bound is not useful when β is very close to 1.

Proof of the Key Proposition, generic case (2 of 2)

Our Goldfeld–Hoffstein–Lieman type lemma actually implies the existence of an effectively computable constant $c_9=c_9(n,m,\varepsilon)>0$ such that either $L(s,\pi\times(\rho\otimes\chi))$ has no zero in $[1-c_9\,Q^{-\varepsilon/64},1)$, or $\beta<1-c_9\,Q^{-\varepsilon/64}$.

If $L(s,\pi\times(\rho\otimes\chi))$ has no zero in $[1-c_9Q^{-\varepsilon/64},1)$, then we are done of course. Otherwise, writing β_χ for the largest zero of $L(s,\pi\times(\rho\otimes\chi))$, we are done by the following inequality:

$$Q^{-2\varepsilon/3} \ll_{n,m,[F:\mathbb{Q}],\varepsilon} |L(1,\pi\times(\rho\otimes\chi))| \ll_{n,m,[F:\mathbb{Q}],\varepsilon} (1-\beta_\chi)Q^{\varepsilon/3}.$$

Proof of the Key Proposition, non-generic case

Non-generic case: $L(s, \pi \times (\rho \otimes \chi^2))$ has a pole in condition **2**.

In this case, $\rho \otimes \chi^2 = \widetilde{\pi} \otimes |\cdot|^{it}$ holds with a unique $t \in \mathbb{R}$. We calculate $t = t_\pi + t_\rho + 2t_\chi$. Consider the Hecke character $\kappa = \overline{\chi} |\cdot|^{it}$, which satisfies $\widetilde{\pi} \otimes \kappa = \rho \otimes \chi$ and

$$C(\kappa) \leqslant C(\chi)(|t|+3)^{[F:\mathbb{Q}]} < (C(\pi)C(\rho)C(\chi)^3)^{[F:\mathbb{Q}]}.$$

The *L*-functions

$$L(s, \pi \times (\widetilde{\pi} \otimes \kappa)) = L(s, \pi \times (\rho \otimes \chi))$$

$$L(s, \pi \times (\widetilde{\pi} \otimes \kappa^2)) = L(s + it, \pi \times \rho)$$

are entire by assumption. Therefore, applying our Goldfeld–Hoffstein–Lieman type lemma to

$$\Pi = \pi \boxplus \pi \otimes \kappa \boxplus \pi \boxplus \pi \otimes \overline{\kappa},$$

we obtain an absolute, effective constant $c_{10} > 0$ such that

$$L(\sigma, \pi \times (\widetilde{\pi} \otimes \kappa)) \neq 0, \qquad \sigma \geqslant 1 - c_{10}/\log(C(\pi)^n C(\kappa)^{n^2}).$$

This is stronger than the desired conclusion.