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Standard L-functions and Rankin–Selberg L-functions

Cuspidal representations
Let Fn be the set of unitary cuspidal automorphic representations
of GLn over a fixed number field F .
Let F∗

n ⊂ Fn be the subset of representations in Fn whose central
character is trivial on the diagonally embedded positive reals.

Each π ∈ Fn gives rise to a standard L-function L(s, π), which has
similar properties as the product of n Hecke L-functions (over F ).
In fact the product of n Hecke L-functions is the L-function of an
isobaric automorphic representation of GLn over F .

Each (π, ρ) ∈ Fn × Fm gives rise to a Rankin–Selberg L-function
L(s, π × ρ), which has similar properties as the product of nm
Hecke L-functions. Langlands functoriality predicts that L(s, π× ρ)
is a product of standard L-functions. Hoffstein–Ramakrishnan
(1995) used this hypothesis to prove the non-existence of
Landau–Siegel zeros other than those of Hecke L-functions.



Twisting and normalizing cuspidal representations

GL1-twists
F1 is the abelian group of unitary Hecke characters acting on Fn
as follows. For each π ∈ Fn and χ ∈ F1, we denote by π ⊗ χ ∈ Fn
the representation g 7→ π(g)χ(det g) embedded into the cuspidal
subspace of L2(GLn(F )\GLn(AF )) in the usual way.

A special case of this action results in the shifting of the L-function
by purely imaginary numbers it (t ∈ R):

L(s + it, π) = L(s, π ⊗ | · |it),
L(s + it, π × ρ) = L(s, π × (ρ⊗ | · |it)).

There is a unique decomposition π = π∗ ⊗ | · |itπ with π∗ ∈ F∗
n and

tπ ∈ R, and similarly for ρ. It follows that

L(s, π) = L(s + itπ, π
∗),

L(s, π × ρ) = L(s + itπ + itρ, π
∗ × ρ∗).



Nonvanishing of Rankin–Selberg L-functions
Establishing zero-free regions and lower bounds for automorphic
L-functions has a venerable history: Dirichlet (1837), Riemann (1859),

Hadamard (1896), de la Vallée Poussin (1896 & 1899), Gronwall (1913), Landau (1918), Titchmarsh (1930),

Page (1935), Siegel (1935), Tatuzawa (1951), Jacquet–Shalika (1976), Shahidi (1981), Moreno (1985),

Hoffstein–Lockhart (1994), Goldfeld–Hoffstein–Lieman (1994), Hoffstein–Ramakrishnan (1995), Banks (1997),

Ramakrishnan–Wang (2003), Iwaniec–Kowalski (2004), Sarnak (2004), Gelbart–Lapid (2006), Goldfeld–Li (2018),

Humphries (2019), Jiang–Lü–Thorner–Wang (2021), Luo (2023), Zhang (2023), Wattanawanichkul (2025).

Theorem (Brumley 2006–2019, Humphries–Thorner 2022)
There exists c1 = c1(n,m, [F : Q]) > 0 with the following property.
If (π, ρ) ∈ F∗

n × F∗
m, then L(σ + it, π × ρ) has no zero in the region

σ ⩾ 1 − c1(C(π)C(ρ))−n−m(|t| + 1)−nm.

Moreover, if π = π̃ or ρ = ρ̃ or ρ = π̃, then L(σ + it, π × ρ) has at
most one zero (necessarily real and simple) in the region

σ ⩾ 1 − c1/ log(C(π)C(ρ)(|t| + 3)).

If the exceptional zero exists, then (π, ρ) = (π̃, ρ̃) or ρ = π̃.



A new zero-free region

We extended the celebrated lower bound of Siegel (1935) to all
GL1-twists of general GLn × GLm Rankin–Selberg L-functions.

Theorem (Harcos–Thorner 2025)
Let (π, ρ) ∈ Fn × Fm. For all ε > 0, there exists an ineffective
constant c2 = c2(π, ρ, ε) > 0 such that if χ ∈ F1, then

|L(σ, π × (ρ⊗ χ))| ⩾ c2C(χ)−ε, σ ⩾ 1 − c2C(χ)−ε.

Remark
It follows that in fact |L(σ+ it, π× (ρ⊗χ))| ⩾ c3C(χ)−ε(|t| + 1)−ε

for σ ⩾ 1 − c3C(χ)−ε(|t| + 1)−ε, with some c3 = c3(π, ρ, ε) > 0.

The proof relies on the group structure of F1, and it utilizes an
auxiliary L-function with nonnegative coefficients that extends the
constructions of de la Vallée Poussin (1899) and Siegel (1935).



An analogue of the Siegel–Walfisz theorem
The new zero-free region allowed us to prove an analogue of the
Siegel–Walfisz theorem for Rankin–Selberg L-functions. Here is a
particular case over the rational field F = Q for simplicity.

Theorem (Harcos–Thorner 2025)
For (π, ρ) ∈ Fn × Fm, let Λπ×ρ(k) denote the k-th Dirichlet
coefficient of −L′(s, π × ρ)/L(s, π × ρ). Moreover, let

Mπ×ρ(x) =
{

x1−it/(1 − it), ρ = π̃ ⊗ | · |it

0, otherwise

Let A > 0 be arbitrary. Let q ⩽ (log x)A be a positive integer
coprime to the conductors of π and ρ, and let a (mod q) be a
reduced residue class modulo q. Then∑

k⩽x
k≡a (mod q)

Λπ×ρ(k) = Mπ×ρ(x)
φ(q) + Oπ,ρ,A

( x
(log x)A

)
.



A generalization of Tatuzawa’s theorem (1 of 2)

The theorem of Siegel (1935) can be made “almost effective”:

Theorem (Tatuzawa 1951)
For every ε > 0, there exists a primitive quadratic Dirichlet
character ψ such that if χ ̸= ψ is any other primitive quadratic
Dirichlet character, then

L(1, χ) > ε

10C(χ)−ε.

Inspired by this result, Jesse Thorner and I proved that among all
the GL1-twists of a given Rankin–Selberg L-function, all but one
admits a good effective zero-free interval on the real axis.

Moreover, if the exceptional GL1-twist exists, then it has at most
one exceptional zero (necessarily simple) on the real axis.



A generalization of Tatuzawa’s theorem (2 of 2)

Theorem (Harcos–Thorner 2025+)
Let (π, ρ, χ) ∈ Fn × Fm × F1 and ε > 0. There exist an effectively
computable constant c4 = c4(n,m, [F : Q], ε) > 0 and a character
ψ = ψπ,ρ,ε ∈ F1 such that if L(s, π × (ρ⊗ χ)) differs from
L(s, π × (ρ⊗ ψ)), then

L(σ, π × (ρ⊗ χ)) ̸= 0, σ ⩾ 1 − c4(C(π)C(ρ)C(χ))−ε.

Moreover, L(s, π × (ρ⊗ ψ)) has at most one zero (necessarily
simple) in the interval σ ⩾ 1 − c4(C(π)C(ρ)C(ψ))−ε.

Corollary
If (π, ρ) ∈ Fn × Fm and ε > 0, then L(σ + it, π × ρ) has at most
one zero (necessarily simple) in the region

σ ⩾ 1 − c4(C(π)C(ρ)DF (|t| + 3)[F :Q])−ε.



The Key Proposition
The proof relies on the observation that the desired zero-free
interval can be established under some auxiliary assumptions.

Key Proposition
Let (π, ρ, χ) ∈ Fn × Fm × F1 and ε ∈ (0, 1). Put

Q = Q(π, ρ, χ) = (C(π)C(ρ))2(n+m)C(χ)(n+m)2
.

Assume that L(s, π × (ρ⊗ χ)) is entire, and one of the following
two conditions holds true:

1 L(s, π × π̃) has a zero in the interval [1 − ε/16, 1).
2 L(s, π×ρ) is entire and has a zero in the interval [1 − ε/16, 1).

Furthermore, if π⊗χ∗ = π or ρ⊗χ∗ = ρ, then |tχ| ⩾ Q−ε/64.

There exists an effectively computable constant
c5 = c5(n,m, [F : Q], ε) > 0 such that

L(σ, π × (ρ⊗ χ)) ̸= 0, σ ⩾ 1 − c5Q−ε.



Outline of the proof (1 of 3)
For ease of notation, we shall seek zero-free intervals of the form

σ ⩾ 1 − c6(C(π)C(ρ)C(χ)2n+2m)−ε,

where ε ∈ (0, 1). We shall apply the Key Proposition with

ε′ = ε

2(n + m)
in the role of ε, and possibly some (ρ′, χ′) in the role of (ρ, χ).

If L(s, π × π̃) has a zero in the interval [1 − ε′/16, 1), then we are
done by the Key Proposition and the standard zero-free region for
L(s, π × π̃) established by Humphries–Thorner (2022). Otherwise,
L(s, π × π̃) has no exceptional zero, and we can focus on χ ∈ F1
such that L(s, π × (ρ⊗ χ)) is entire. Let S be the set of such χ.

If, for all χ ∈ S, the L-function L(s, π × (ρ⊗ χ)) has no zero in
[1 − ε′/16, 1), then we are done. Otherwise, we can fix λ ∈ S with
minimal analytic conductor such that L(s, π × (ρ⊗ λ)) has a zero
in [1 − ε′/16, 1).



Outline of the proof (2 of 3)
After fixing λ ∈ S as above, we can assume that C(χ) ⩾ C(λ), for
otherwise we are done. We make the change of variables

ρ′ = ρ⊗ λ, χ′ = χλ.

Note that L(s, π × ρ′) is entire and has a zero in [1 − ε′/16, 1).
Moreover, L(s, π × (ρ′ ⊗ χ′)) = L(s, π × (ρ⊗ χ)) is entire.

We apply the Key Proposition with (ρ′, χ′, ε′) in place of (ρ, χ, ε).
Accordingly, we work with Q = Q(π, ρ′, χ′), which satisfies

(C(π)C(ρ⊗λ)C(ρ⊗χ))n+m < Q < (C(π)C(ρ))2(n+m)C(χ)4(n+m)2
.

If the twist equivalence condition of the Key Proposition is satisfied
for (ρ′, χ′) in place of (ρ, χ), then we are done. Otherwise,

L(s, π × (ρ⊗ χ)) = L(s + itχ − itλ, π × (ρ⊗ λ)),

where |tχ − tλ| < (C(π)C(ρ⊗ λ)C(ρ⊗ χ))−ε/128.



Outline of the proof (3 of 3)
So every zero of L(s, π × (ρ⊗ χ)) in the interval

σ ⩾ 1 − c6(C(π)C(ρ)C(χ)2n+2m)−ε

yields a zero σ + i(tχ − tλ) very close to 1 of L(s, π × (ρ⊗ λ)).
Moreover, we can recover the twist L(s, π × (ρ⊗ χ)) and its zero
σ ≈ 1 from the zero σ + i(tχ − tλ) ≈ 1 of L(s, π × (ρ⊗ λ)).
However, by a Goldfeld–Hoffstein–Lieman type argument,
L(s, π × (ρ⊗ λ)) has at most 1 such zero, with multiplicity:

Lemma
There exists a constant c7 = c7(n,m) > 0 such that the product

L(s, π × π̃)L(s, ρ× ρ̃)L(s, π × (ρ⊗ λ))L(s, π̃ × (ρ̃⊗ λ))

has at most 2 zeros (counted with multiplicity) in the region

σ ⩾ 1 − c7
log(C(π)C(ρ⊗ λ)) and |t| ⩽ c7

log(C(π)C(ρ⊗ λ)) .



Hoffstein–Ramakrishnan & Goldfeld–Hoffstein–Lieman
Let Π = π1 ⊞ · · · ⊞ πℓ be an isobaric sum of unitary cuspidal
automorphic representations.

Lemma (Hoffstein–Ramakrishnan 1995)

The logarithm of L(s,Π × Π̃) has nonnegative Dirichlet coefficients.

Lemma (after Goldfeld–Hoffstein–Lieman 1994)

There exists an absolute and effectively computable constant
c8 > 0 with the following property. Let r be the order of the pole
of L(s,Π × Π̃) at s = 1. Let E (Π × Π̃) be the logarithm of
C(Π × Π̃) plus the sum of reciprocal imaginary parts of the poles
of L(s,Π × Π̃) in the upper half-plane, counted with multiplicity.
Then L(s,Π × Π̃) has at most r zeros (counted with multiplicity)
in the region

σ ⩾ 1 − c8

rE (Π × Π̃)
and |t| ⩽ c8√

rE (Π × Π̃)
.



Proof of the Key Proposition, generic case (1 of 2)

Generic case: L(s, π × (ρ⊗ χ2)) is entire in condition 2 .

We use the auxiliary L-function L(s,Π × Π̃), where Π is one of:
1 Π = π ⊞ ρ̃⊗ χ

2 Π = π ⊞ π ⊗ χ⊞ ρ̃⊞ ρ̃⊗ χ

Hence L(s,Π × Π̃) has nonnegative Dirichlet coefficients, and it
has a zero β ∈ [1 − ε/16, 1). We apply Perron’s formula and the
Residue Theorem to the meromorphic function

s 7→ L(s,Π × Π̃)x s−βΓ(s − β),

where x ⩾ 1 is a parameter. Each residue can be bounded in terms
of |L(1, π× (ρ⊗χ))|, and after optimizing x ⩾ 1, we conclude that

|L(1, π × (ρ⊗ χ))| ≫n,m,[F :Q],ε (1 − β)4Q−ε/2.

Of course, this bound is not useful when β is very close to 1.



Proof of the Key Proposition, generic case (2 of 2)

Our Goldfeld–Hoffstein–Lieman type lemma actually implies the
existence of an effectively computable constant
c9 = c9(n,m, ε) > 0 such that either L(s, π × (ρ⊗ χ)) has no zero
in [1 − c9Q−ε/64, 1), or β < 1 − c9Q−ε/64.

If L(s, π × (ρ⊗ χ)) has no zero in [1 − c9Q−ε/64, 1), then we are
done of course. Otherwise, writing βχ for the largest zero of
L(s, π × (ρ⊗ χ)), we are done by the following inequality:

Q−2ε/3 ≪n,m,[F :Q],ε |L(1, π × (ρ⊗ χ))| ≪n,m,[F :Q],ε (1 − βχ)Qε/3.



Proof of the Key Proposition, non-generic case
Non-generic case: L(s, π × (ρ⊗ χ2)) has a pole in condition 2 .
In this case, ρ⊗ χ2 = π̃ ⊗ | · |it holds with a unique t ∈ R.
We calculate t = tπ + tρ + 2tχ. Consider the Hecke character
κ = χ| · |it , which satisfies π̃ ⊗ κ = ρ⊗ χ and

C(κ) ⩽ C(χ)(|t| + 3)[F :Q] < (C(π)C(ρ)C(χ)3)[F :Q].

The L-functions

L(s, π × (π̃ ⊗ κ)) = L(s, π × (ρ⊗ χ))
L(s, π × (π̃ ⊗ κ2)) = L(s + it, π × ρ)

are entire by assumption. Therefore, applying our
Goldfeld–Hoffstein–Lieman type lemma to

Π = π ⊞ π ⊗ κ⊞ π ⊞ π ⊗ κ,

we obtain an absolute, effective constant c10 > 0 such that

L(σ, π × (π̃ ⊗ κ)) ̸= 0, σ ⩾ 1 − c10/ log(C(π)nC(κ)n2).

This is stronger than the desired conclusion.


