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Standard L-functions and Rankin—Selberg L-functions

Cuspidal representations

Let §, be the set of unitary cuspidal automorphic representations
of GL, over a fixed number field F.

Let §7 C §, be the subset of representations in §, whose central
character is trivial on the diagonally embedded positive reals.

Each m € §, gives rise to a standard L-function L(s, ), which has
similar properties as the product of n Hecke L-functions (over F).
In fact the product of n Hecke L-functions is the L-function of an
isobaric automorphic representation of GL,, over F.

Each (m, p) € §n X §m gives rise to a Rankin—Selberg L-function
L(s,m x p), which has similar properties as the product of nm
Hecke L-functions. Langlands functoriality predicts that L(s, 7 x p)
is a product of standard L-functions. Hoffstein—Ramakrishnan
(1995) used this hypothesis to prove the non-existence of
Landau—Siegel zeros other than those of Hecke L-functions.



Twisting and normalizing cuspidal representations

$1 is the abelian group of unitary Hecke characters acting on §,
as follows. For each m € §, and x € §1, we denote by 7 ® x € §p
the representation g — m(g)x(det g) embedded into the cuspidal
subspace of L2(GL,(F)\GL,(AF)) in the usual way.

A special case of this action results in the shifting of the L-function
by purely imaginary numbers it (¢t € R):
L(s+it,m) = L(s,m @ |- ["),
Ls+it,m % p) = Ls,m x (02 |- V).
There is a unique decomposition 7 = 7* ® | - |** with 7* € F* and
t, € R, and similarly for p. It follows that
L(s,7) = L(s + ity, "),
L(s,m x p) = L(s + ity + it,, 7" X p*).



Nonvanishing of Rankin—Selberg L-functions

Establishing zero-free regions and lower bounds for automorphic
L-functions has a venerable history: biichlet (1837), Riemann (1859),

Hadamard (1896), de la Vallée Poussin (1896 & 1899), Gronwall (1913), Landau (1918), Titchmarsh (1930),
Page (1935), Siegel (1935), Tatuzawa (1951), Jacquet-Shalika (1976), Shahidi (1981), Moreno (1985),
Hoffstein—Lockhart (1994), Goldfeld—Hoffstein-Lieman (1994), Hoffstein—-Ramakrishnan (1995), Banks (1997),
Ramakrishnan-Wang (2003), lwaniec—Kowalski (2004), Sarnak (2004), Gelbart—Lapid (2006), Goldfeld—Li (2018),

Humphries (2019), Jiang-Lii—Thorner-Wang (2021), Luo (2023), Zhang (2023), Wattanawanichkul (2025).

Theorem (Brumley 2006-2019, Humphries—Thorner 2022)

There exists ¢c; = c1(n, m, [F : Q]) > 0 with the following property.
If (m,p) € &5 X &5, then L(o + it, ™ X p) has no zero in the region

o > 1—a(C(@)C(p) " (|t] + 1)~

Moreover, if 1 =7 or p=p or p =T, then L(o + it,m X p) has at
most one zero (necessarily real and simple) in the region

o 21— c/log(C(m)C(p)([t] +3)).

If the exceptional zero exists, then (mw,p) = (7,p) or p = T.




A new zero-free region

We extended the celebrated lower bound of Siegel (1935) to all
GL;-twists of general GL,, x GL,, Rankin—Selberg L-functions.

Theorem (Harcos—Thorner 2025)

Let (m,p) € §n X §m. For all ¢ > 0, there exists an ineffective
constant ¢ = (7, p,e) > 0 such that if x € §1, then

|L(o,m % (p®x))| = 2C(x)"F, oc>1-calC(x)".

It follows that in fact |[L(o +it, 7 X (p®X))| = a3 C(x)=(|t|+ 1)~
foro > 1—c3C(x)(|t| + 1), with some ¢3 = c3(m, p,e) > 0.

The proof relies on the group structure of §1, and it utilizes an
auxiliary L-function with nonnegative coefficients that extends the
constructions of de la Vallée Poussin (1899) and Siegel (1935).



An analogue of the Siegel-Walfisz theorem

The new zero-free region allowed us to prove an analogue of the
Siegel-Walfisz theorem for Rankin—Selberg L-functions. Here is a
particular case over the rational field F = Q for simplicity.

Theorem (Harcos—Thorner 2025)

For (m,p) € §n X Fm, let Arx, (k) denote the k-th Dirichlet
coefficient of —L'(s,m x p)/L(s, 7 x p). Moreover, let

X/ —it), p=T|-|"
0, otherwise

Mzsp(x) = {

Let A > 0 be arbitrary. Let q < (logx)”* be a positive integer
coprime to the conductors of m and p, and let a (mod q) be a
reduced residue class modulo q. Then

_ Maxp(x) X
IZ;( /\7r><p(k) = (P(CI) aF O7T7P7A <—(|OgX)A) .

k=a (mod q)




A generalization of Tatuzawa's theorem (1 of 2)

The theorem of Siegel (1935) can be made “almost effective”:

Theorem (Tatuzawa 1951)

For every € > 0, there exists a primitive quadratic Dirichlet
character 1 such that if x # 1 is any other primitive quadratic
Dirichlet character, then

L(1,x) > 500~

Inspired by this result, Jesse Thorner and | proved that among all
the GLj-twists of a given Rankin—Selberg L-function, all but one
admits a good effective zero-free interval on the real axis.

Moreover, if the exceptional GL1-twist exists, then it has at most
one exceptional zero (necessarily simple) on the real axis.



A generalization of Tatuzawa's theorem (2 of 2)

Theorem (Harcos—Thorner 2025+)

Let (m,p,x) € §n X §m X F1 and € > 0. There exist an effectively
computable constant ¢4 = ca(n, m, [F : Q],€) > 0 and a character
W =Yg e € §1 such that if L(s, 7 x (p ® X)) differs from

L(s,m x (p®1)), then

Loymx (0@ X)) £0, o> 1—a(C(m)C(p)C()) ™.

Moreover, L(s,m x (p ® 1)) has at most one zero (necessarily
simple) in the interval o > 1 — c4(C(m)C(p)C(¢))~=.

\.

If (m,p) € §n X Fm and € > 0, then L(o + it, ™ X p) has at most
one zero (necessarily simple) in the region

o > 1—a(C(m)C(p)Dr (|t +3)1F )~




The Key Proposition

The proof relies on the observation that the desired zero-free
interval can be established under some auxiliary assumptions.

Key Proposition
Let (7, p,X) € n X Fm X F1 and € € (0,1). Put

Q= Q(m. p.x) = (C(m)C(p) XM ().
Assume that L(s, 7 x (p ® x)) is entire, and one of the following
two conditions holds true:
@ L(s,m x 7) has a zero in the interval [1 — £/16,1).

@ L(s,m x p) is entire and has a zero in the interval [1 —e/16,1).
Furthermore, if 1@ x* = 7 or p® x* = p, then |t | > Q~</%4.

There exists an effectively computable constant
cs = cs(n, m,[F : Q],&) > 0 such that

Lio,m x (p®x)) #0, oc>21—cQ".




Outline of the proof (1 of 3)

For ease of notation, we shall seek zero-free intervals of the form
o >1—c(C(m)C(p)Cx)*">m)*,

where € € (0,1). We shall apply the Key Proposition with
;o 5

~ 2(n+m)
in the role of €, and possibly some (o, ') in the role of (p, x).

If L(s, 7 x 7) has a zero in the interval [1 —&/16,1), then we are
done by the Key Proposition and the standard zero-free region for
L(s,m x 7) established by Humphries—=Thorner (2022). Otherwise,
L(s, 7 x 7) has no exceptional zero, and we can focus on x € §1
such that L(s, 7 x (p ® x)) is entire. Let S be the set of such y.

If, for all x € S, the L-function L(s,m X (p ® x)) has no zero in

[1 —£'/16,1), then we are done. Otherwise, we can fix A € S with
minimal analytic conductor such that L(s, 7 x (p ® A)) has a zero
in [1—¢'/16,1).



Outline of the proof (2 of 3)

After fixing A € S as above, we can assume that C(x) > C(\), for
otherwise we are done. We make the change of variables

/

Pr=p@X X =x\

Note that L(s,m x p') is entire and has a zero in [1 —£'/16,1).
Moreover, L(s,m X (p' @ X)) = L(s, 7™ x (p ® X)) is entire.

We apply the Key Proposition with (o', x’,¢’) in place of (p, x,¢).
Accordingly, we work with Q = Q(, ¢/, X'), which satisfies

(C(m) C(P@/\)C(p@x))ner <Q< (C(?T)C(p))2(n+m)C(X)4("+m)2.

If the twist equivalence condition of the Key Proposition is satisfied
for (p’, X') in place of (p, x), then we are done. Otherwise,

L(s,m x (p®x)) = L(s+ ity — it\,m x (p® X)),

where [t, — ty| < (C(7)C(p @ N)C(p @ X))~/



Outline of the proof (3 of 3)

So every zero of L(s,m x (p ® x)) in the interval
o> 1 e6(C(m)C(p) C(x)2H2m)
yields a zero o + i(t, — t)) very close to 1 of L(s, 7 X (p ® A)).

Moreover, we can recover the twist L(s, 7 X (p ® x)) and its zero
o ~ 1 from the zero o + i(t, — t\) = 1 of L(s, 7 X (p®@ A)).

However, by a Goldfeld—Hoffstein—Lieman type argument,
L(s, ™ x (p® A)) has at most 1 such zero, with multiplicity:

There exists a constant c; = c7(n, m) > 0 such that the product

L(s,m x T)L(s,p x p)L(s, ™ x (p @ A))L(s, 7 x (F® X))
has at most 2 zeros (counted with multiplicity) in the region

Gy c7
721 giemcpen) 1S gemcr o)




Hoffstein—Ramakrishnan & Goldfeld—Hoffstein—Lieman

Let M= H---Hmp be an isobaric sum of unitary cuspidal
automorphic representations.

Lemma (Hoffstein-Ramakrishnan 1995)

The logarithm of L(s, T x M) has nonnegative Dirichlet coefficients.

Lemma (after Goldfeld—Hoffstein-Lieman 1994)

There exists an absolute and effectively computable constant

cg > 0 with the following property. Let r be the order of the pole
of L(s,M x M) ats =1. Let E(I x 1) be the logarithm of

c(n x ﬁ) plus the sum of reciprocal imaginary parts of the poles
of L(s,M x M) in the upper half-plane, counted with multiplicity.
Then L(s,T x 1) has at most r zeros (counted with multiplicity)
in the region

c8

1-—=2 _ and |t < @
rE(MN x 1)

S VrE(Mx N’




Proof of the Key Proposition, generic case (1 of 2)

Generic case: L(s,7 x (p® x?)) is entire in condition @.

We use the auxiliary L-function L(s, 1 x ), where I is one of:
OMN=mHpeY
Q@ MN=rBHraxBpHp®X

Hence L(s, M x ﬁ) has nonnegative Dirichlet coefficients, and it
has a zero € [1 —¢/16,1). We apply Perron’s formula and the
Residue Theorem to the meromorphic function

s L(s, N x Mx*Pr(s — B),

where x > 1 is a parameter. Each residue can be bounded in terms
of [L(1,7 x (p® x))|, and after optimizing x > 1, we conclude that

‘L(]-v T X (p ® X))| >>n,m,[F:Q],s (1 - 5)4076/2'

Of course, this bound is not useful when [ is very close to 1.



Proof of the Key Proposition, generic case (2 of 2)

Our Goldfeld—Hoffstein—Lieman type lemma actually implies the
existence of an effectively computable constant

cg = cg(n, m,e) > 0 such that either L(s, 7 x (p @ x)) has no zero
in[1—cgQ5/%%,1), or B < 1— cgQ /5.

If L(s,7 x (p® X)) has no zero in [1 — cgQ /%%, 1), then we are
done of course. Otherwise, writing 3, for the largest zero of
L(s,m % (p® X)), we are done by the following inequality:

Q_2€/3 <<n,m,[F:Q],e |L(17 ™ X (p ® X))| <<n,m,[F:Q]75 (1 - BX)QSB'



Proof of the Key Proposition, non-generic case

Non-generic case: L(s, 7 x (p ® x2)) has a pole in condition @.

In this case, p® x2 =7 ® |- |" holds with a unique t € R.
We calculate t = t; + t, + 2t,. Consider the Hecke character
k =X| - |'t, which satisfies 7 ® k = p ® x and

C(r) < CO)(|t] +3)F A < (C(m)C(p) C(x)*)F .
The L-functions
L(s,m x (F @ k) = L(s,m x (p @ x))
L(s,m x (7 @ k2)) = L(s + it, 7 x p)

are entire by assumption. Therefore, applying our
Goldfeld—Hoffstein—Lieman type lemma to

M=rHrxBHrHTRE,
we obtain an absolute, effective constant ¢;g > 0 such that
Llo,m x (T ®K)) # 0, o>1-cyo/ Iog(C(w)”C(/f)"z).

This is stronger than the desired conclusion.



