A nonabelian circle method

Victor Wang
(joint work with Nuno Arala, Jayce Getz, Jiagi Hou,
Chun-Hsien Hsu, and Huajie Li; NSF RTG DMS-2231514)

IST Austria and loM Academia Sinica

Aarhus Automorphic Forms Conference, August 2025

This project has received funding from the European Union’s Horizon 2020 research and innovation program

under the Marie Sktodowska-Curie Grant Agreement No. 101034413



Some matrix equations

Let My(R) be the set of d x d matrices with entries in R.

> XY = YX, where X, Y € My(Z). This is interesting for
d > 2 (nonabelian). The number of pairs with entries in
[-T,T]as T — oo is studied in [Browning—Sawin-W.
2024, Mudgal 2024, Chapman—Mudgal 2025].

» X9 = A, where X € My(Z). Again, something interesting
happens for d > 2. For typical A, such as if det(A) # 009,
this has no solutions. How about special A? For scalar
A = kly with k € Z, this has ~ ¢, T99=1)/2 solutions as
T — oo [Eskin-Mozes—Shah 1996].

1One can also study other asymptotic aspects of the point count, such
as Cesaro convergence over k when T < |k|*/9. See results on the Linnik
problem in [Einsiedler-Lindenstrauss—Michel-Venkatesh 2011].



Some matrix equations
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> XY = YX, where X, Y € My(Z). This is interesting for
d > 2 (nonabelian). The number of pairs with entries in
[-T,T]as T — oo is studied in [Browning—Sawin-W.
2024, Mudgal 2024, Chapman—Mudgal 2025].

» X9 = A, where X € My(Z). Again, something interesting
happens for d > 2. For typical A, such as if det(A) # 009,
this has no solutions. How about special A? For scalar
A = kly with k € Z, this has ~ ¢, T99=1)/2 solutions as
T — oo [Eskin-Mozes—Shah 1996].

» This talk will concentrate on nonabelian sums of n squares,
especially the best error term as n — oo (Weyl sums).

1One can also study other asymptotic aspects of the point count, such
as Cesaro convergence over k when T < |k|'/9. See results on the Linnik
problem in [Einsiedler-Lindenstrauss—Michel-Venkatesh 2011].



Theorem (Arala—Getz—Hou—Hsu-Li-W. 2024)

Let D/Q be a quaternion algebra ramified at S O {2,00}. Fix
a maximal order Op C D and a function w € C°(D" ® R),
where n > 8. Then for vq,...,v, € {£1l} and T > 1,

> wlx/T)=cpuw T 2+ 0, (T°"),

x€O0p: P(x)=0

where P(x) := vix} + - - + v,x2. (Asymptotic forn > 9.)

v
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Let D/Q be a quaternion algebra ramified at S O {2,00}. Fix
a maximal order Op C D and a function w € C°(D" ® R),
where n > 8. Then for vq,...,v, € {1} and T > 1,

> wlx/T)=cpuw T 2+ 0, (T°"),
x€O}: P(x)=0

where P(x) 1= v1x} + -+ + v,x2. (Asymptotic forn > 9.)

v

Previously an asymptotic was available for n > 17, thanks to
Myerson's 2018 strengthening of Birch's 1962 classical result.

Remark

The solutions to the aforementioned equation X9 = I, for
X € My(Z) break up into finitely many GL4(Z)-conjugation
orbits. But the equations XY = YX and P(x) = 0 seem to
lack such a nearly-transitive group action.




For concreteness, one could take D = Q + Qi + Qj + Qk to be
Hamilton's classical quaternions, with

i? = j?> = k? = jjk = —1 (Broome Bridge, Dublin, 1843),

and Op = ZW + Zi + Zj + Zk the Hurwitz quaternions
(1919).



For concreteness, one could take D = Q + Qi + Qj + Qk to be
Hamilton's classical quaternions, with
i? = j?> = k? = jjk = —1 (Broome Bridge, Dublin, 1843),

and Op = ZW + Zi + Zj + Zk the Hurwitz quaternions
(1919). Issues with zerodivisors currently prevent us from
taking D = M(Q) and Op = M,(Z) in the previous theorem.
However, we have the following level-of-distribution result:

Theorem (Arala—W. 2025+)

Let d € {2,3} and w € C°(M4(R)"). If b,r € My(Z) and
T =< |r| > 0 with |det(r)| prime and |det(r)| < |r|?, then

C szn 2_d
T) = =2+ O (T 2)te),
> wlx/T) = S+ O )
xEMy(Z)"
X2+t tx2—beErMy(Z)

Asymptotic for n > 2d + 1. Previously n > d*(d*>+1)/(2d —2)
available bv [Birch 1962. Yamagishi 2023]?



Rough idea of the algebraic circle method

Let A be a free Z-module of finite rank. Fix a Z-bilinear’> map
w: Ax A— A, aZ-linear map tr: A — 7Z, and a vector norm
|-|: AQ R — Rsg. Let e(t) := &> for t € R. If x € A, then

]-X:O = / e(elxl +-+ QrankAXrankA) do
(A®RR)/A

= / e(tr(6x)) do,
(ASR)/A

provided that the pairing trou: A x A — Z is perfect.?

2Thus A is distributive, but not necessarily commutative or associative.
3For non-degenerate tr oy, the second (A ® R)/A needs adjustment.



Rough idea of the algebraic circle method

Let A be a free Z-module of finite rank. Fix a Z-bilinear’> map
w: Ax A— A, aZ-linear map tr: A — 7Z, and a vector norm
|-|: AQ R — Rsg. Let e(t) := &> for t € R. If x € A, then

1x:0 = / e(elxl +-+ QrankAXrankA) do
(A®RR)/A

= / e(tr(6x)) do,
(ASR)/A

provided that the pairing trou: A x A — Z is perfect.?

Proposition (Algebraic Dirichlet-type covering)

Let € AQR and Q > 1. Then there exists (a, r) € A? such
that 0 # |r| < Q and |0r — a| € 1/Q.

2Thus A is distributive, but not necessarily commutative or associative.
3For non-degenerate tr oy, the second (A ® R)/A needs adjustment.




Quadratic Weyl sums over Z (classical)

Fix w € C(R). Let a,r € Z\ {0} with gcd(a, r) = 1. Let
1 < T <|r|. Writing e(0) := e*™ for § € R, we have
Yr(a/r) = Z w(x/T)e(ax?/r) ZI
XEL cEZ
by Poisson summation, where /,(c) = [, w(x/T)e(—cx/r) dx
aX2 cX
and Sa,r( ) = %ZxEZ/rZ e(%)
> Integration by parts: /,(¢) <a ﬁ for all A> 0.
» Squaring and differencing: S, ,(c) < Ir\+/2 (Gauss).



Quadratic Weyl sums over Z (classical)

Fix w € C(R). Let a,r € Z\ {0} with gcd(a, r) = 1. Let
1 < T <|r|. Writing e(0) := e*™ for § € R, we have
Yr(a/r) = Z w(x/T)e(ax?/r) ZI
X€EZ cEZ
by Poisson summation, where /,(c) = [, w(x/T)e(—cx/r) dx
aX2 cX

and Sa,r( ) = %erz/rz e(%)

> Integration by parts: /,(¢) <a ﬁ for all A> 0.

» Squaring and differencing: S, ,(c) < Ir\+/2 (Gauss).
Thus Xr(a/r) <a Irl% ez min(l, | Te/r|™*) <a |r‘%|r/7'|
essentially coming from |c| < |r/T|. So: Lr(a/r) < |r|*/2. (I
think this is essentially sharp for all T > r¥/2+¢ if 2 = 1.)

» This is square-root cancellation if T < |r|.

» The sums X 1(60), for @ € R/Z, appear in problems such as
counting integer solutions to quadratic equations.



Quadratic Weyl sums over Z[i] (classical)
Fix w € C°(C). Let a,r € Z[i] \ {0} with |gcd(a, r)] = 1. Let
1 < T < |r|. Directly adapting to Z[i] the slide for Z gives
Yr(a/r) = Z w(x/ T)e(tr(ar 1x?)) < |Z[i]/rZ[i]|*? = |r|.
x€Z[i]

Again, this is square-root cancellation over x if T =< |r|.



Quadratic Weyl sums over Z[i] (classical)

Fix w € C°(C). Let a,r € Z[i] \ {0} with |gcd(a, r)] = 1. Let
1 < T < |r|. Directly adapting to Z[i] the slide for Z gives

Yr(a/r):= Z w(x/T)e(tr(ar*x?)) < |Z[i]/rZ[i]|*? = |r|.

x€Z[i]

Again, this is square-root cancellation over x if T =< |r|.

» Key to this generalization is that r € Center(Z][i]), so that
e(tr(ar~'x?)) depends only on x mod r € Z[i]/rZ][i].

» However, as an exponential sum over Z?2, the quantity
Y 7(a/r) has modulus |r|?, rather than |r|. Thus, by
packaging Z? into Z[i], we are able to get square-root
cancellation over x much shorter than the modulus.

» The sums X1(#) appear when counting solutions to
quadratic equations in Z[i], or equivalently, to a pair of
quadratic equations (the Weil restriction) in Z.



Weil restriction in analytic number theory

» For the general story over rings of integers Ok of global
fields K, see e.g. [Skinner 1997, Browning—Vishe 2014].

» Difficult variants of the packaging idea include generalized
quadratic forms over K, which involve conjugated variables
o(x), and are not just quadratic forms over the number
field [Browning—Pierce-Schindler 2022].



Weil restriction in analytic number theory

» For the general story over rings of integers Ok of global
fields K, see e.g. [Skinner 1997, Browning—Vishe 2014].

» Difficult variants of the packaging idea include generalized
quadratic forms over K, which involve conjugated variables
o(x), and are not just quadratic forms over the number
field [Browning—Pierce-Schindler 2022].

Related examples of Weil restriction or similar packaging:

» Solving x* = y? + 2 (Fermat; Euler using Z[/=2]).

» Skolem’s method for Thue equations like x3 + 2y3 = k.

» Prime values of restricted norm forms like x> + y* or
x3 +2y3 see e.g. [Friedlander—lwaniec 1998, Heath-Brown
2001, ..., Maynard 2020, Green—Sawhney 2024].

» Linear spaces on hypersurfaces [Brandes 2014].

» Counting F[t][s]/s™- and F[t][s, r]/(s™, r?)-points
on hypersurfaces to study singularities on the moduli
spaces of curves thereof [Glas—Hase-Liu 2024].



Quadratic Weyl sums over Z(i, j) (i* = j> = —1)
Let L=7Z(i,j) =Z+ Zi + Zj + Zk. Fix w € C°(L ® R).
Given x = x1 + X0 + x3j + xak, let xT 1= x1 — xoi — xaj — Xxak,
trd(x) := x' + x = 2x;, and nrd(x) := x'x = xZ + - + x2.
Theorem (Arala—Getz—Hou—Hsu-Li-W. 2024)

Let a,r € L\ {0} with gcdy(ar', nrd(r)) < gedy(r),® where
ged is computed in Z° and in Z*, respectively. If T < |r|, then

Yr(ar™) = Z w(x/T)e(trd(ar 'x?)) <, T2t

x€elL

?For example, take nrd(r) square-free and ged(nrd(a), nrd(r)) = 1.
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Let L = Z{i,j) = Z + Zi + Zj + Zk. Fix w € C*(L ® R).

Given x = x1 + X0 + x3j + xak, let xT 1= x1 — xoi — xaj — Xxak,
trd(x) := x' + x = 2x;, and nrd(x) := x'x = xZ + - + x2.
Theorem (Arala—Getz—Hou—Hsu-Li-W. 2024)

Let a,r € L\ {0} with gcdy(ar', nrd(r)) < gedy(r),® where
ged is computed in Z° and in Z*, respectively. If T < |r|, then

Yr(ar™) = Z w(x/T)e(trd(ar 'x?)) <, T2t

x€elL

?For example, take nrd(r) square-free and ged(nrd(a), nrd(r)) = 1.

V.

Are there near-equality cases? If trd(ar™!) € Z, or equivalently
trd(ar’) = 0 mod nrd(r), then the contribution to ¥ (ar™?!)
from trd(x) = 0 is of size T (no oscillation).



Theorem (Arala—Getz—Hou—Hsu-Li-W. 2024)
Let a,r € L\ {0} with gedy(ar’, nrd(r)) < gedy(r). If
T =< |r|, then

Yr(ar™) = Z w(x/T)e(trd(ar 'x?)) <, T2t

xeL

V.

The proof uses Fourier analysis, Cartan decomposition, matrix
identities, Gauss sums, and the geometry of numbers. Crucially,
the vector ar™* € Q + Qi + Qj + Qk is rather special:

ar_l . arT . b1+bzl+b3_j+b4k
~onrd(r) nrd(r) ’
say, where (by, by, bs, by) € Z* satisfies
b? + .-+ b2 = nrd(ar') = 0 mod nrd(r).
Contrast with the classical 4-dimensional circle method, whose
fractions have smaller denominator but lack algebraic structure.

10



Poisson summation

Let a,r € L\ {0} and T < |r|. Then
Sr(ar )= w(x/T)e(trd(ar x*)) = > 1(c)S..(c)
x€L cell
by Poisson summation in (Z*/nrd(r)Z*) x R*, where

1) = [l Tre= e o

rd(arfx? + cx
)= —— 3 o(rdlarx £ o9,

4
nrd(r) x€L/nrd(r)L nrd(r)

Since r ¢ Center(LL), the sum in S, .(c) is genuinely over
L /nrd(r)L, not just over L/rL.

11



Poisson summation
Let a,r € L\ {0} and T < |r|. Then

Sr(ar )= w(x/T)e(trd(ar x*)) = > 1(c)S..(c)

x€L cell
by Poisson summation in (Z*/nrd(r)Z*) x R*, where

1) = [l Tre= e o

rd(arfx? + cx
()= ——— 3 o(rdlarx £ o9,

4
nrd(r) x€L/nrd(r)L nrd(r)

Since r ¢ Center(LL), the sum in S, .(c) is genuinely over
L /nrd(r)L, not just over L/rIL. Integration by parts gives
l(c) <a m for all A > 0. Thus we may pretend that

lc| < nrd(r)/T.
But nrd(r)/T =< |r|?/T =< T. Should we give up?



Local estimates and vanishing phenomena

Proposition (Arala—Getz—Hou—-Hsu-Li-W. 2024)
Assume ged,(r) =1 and 2 N = nrd(r). Let c € L.

1. IfS,,(c) # 0, there exists co = co(a, r) € L such that
cr € corZ + NL. (We can take co = ar'by for any
sufficiently generic by = bo(r) € LL.)

12



Local estimates and vanishing phenomena

Proposition (Arala—Getz—Hou—-Hsu-Li-W. 2024)

Assume ged,(r) =1 and 2 N = nrd(r). Let c € L.

1. IfS,,(c) # 0, there exists co = co(a, r) € L such that
cr € corZ + NL. (We can take co = ar'by for any
sufficiently generic by = by(r) € LL.)

2. Assume gcd,(ar’,N) = 1. Let K > 1 be the largest
divisor of N such that (¢ — c')r € KIL. Then

K1/2

Sayr(C) < W

Thus the sum S, ,(c) is controlled by lattices of the form

NK,r,q):={celL:(c—creKL, cr € qorZ + NL}.



Proof of proposition (non-vanishing constraint)
Assume gcd,(r) =1 and 2+ N = nrd(r). By definition,

rd(arfx? + cx
D i )

4
xeL/NL

Since r ¢ Center(LL), the sum over x is usually not rlL-periodic.

To quantify the failure of periodicity, we replace x with x + ry
and average over y € L, getting

rd(arfx(x + ry) + c(x + r
Sar(c):i Z e(t d( ( + Y)+ ( + Y)))

8 N
x,y€L/NL
1 trd(ar’x? + cx)
Y Z e( N )-

x€L/NL: artxr+cr=0

13



Proof of proposition (non-vanishing constraint)
Assume gcd,(r) =1 and 2+ N = nrd(r). By definition,

rd(arfx? + cx
D i )

4
xeL/NL

Since r ¢ Center(LL), the sum over x is usually not rlL-periodic.

To quantify the failure of periodicity, we replace x with x + ry
and average over y € L, getting

rd(arfx(x + ry) + c(x + r
Sar(c):i Z e(t d( ( + Y)+ ( + Y)))

8 N
x,y€L/NL
1 trd(ar’x? + cx)
Y Z e( N )-

x€L/NL: artxr+cr=0

Some pair of Z-module isomorphisms L/NL — M»(Z/NZ)

sends the map x — rixr tom — [¥ 9 m[3 1= [0 .

Thus x — rfxr has image rfbyrZ mod NI for some by € L. ..

13



Proof of proposition (further cancellation)

Assume S, ,(c) # 0. From the previous slide, we have

rd(arfx? + cx
CHE B DR i Gt}

x€L/NL: artxr+cr=0
which vanishes (empty sum) unless cr € ar'byrZ + NL. So
#{x € L/NL : ar'xr 4+ cr = 0} = #ker(x > ar'xr).

If gcd,(ar’, N) = 1, then ar' and r lie in the same Cartan
decomposition class modulo N, so

N4

# ker(x > arfxr) = # ker(x > rixr) = = N3,

#im(x — rixr)

14



Proof of proposition (further cancellation)

Assume S, ,(c) # 0. From the previous slide, we have

rd(arfx? + cx
53,,(c)=Ni 3 ot d(ar’x® + ))’

N

x€L/NL: artxr+cr=0
which vanishes (empty sum) unless cr € ar'byrZ + NL. So
#{x € L/NL : ar'xr 4+ cr = 0} = #ker(x > ar'xr).

If gcd,(ar’, N) = 1, then ar' and r lie in the same Cartan
decomposition class modulo N, so

N4
#im(x — rixr)

# ker(x > arfxr) = # ker(x > rixr) =

To improve on the triangle inequality |S,,(c)| < &, replace x
with x + k and average over k € Z. If K = gcd(trd(ar'), N),

]-HXG]L7 artxr+creNL, trd(2art x+c)eKZ (Ga USS)

Sar(c) < (N/K)/2N

= N3,

14



Proof of proposition (lattice simplification)
From the previous slide, if K = gcd(trd(ar'), N),

IHXG]L, artxr+creNL, trd(2artx+c)eKZ
(N/K)YZN

Since ar' + ra' = trd(ar’) € KL, we find, on replacing ar'
with —ra' in the conditions above, that

cr € ralxr + KL, trd(c) € trd(2ra'x) + KZ.

Sar(€) < (Gauss).

15



Proof of proposition (lattice simplification)
From the previous slide, if K = gcd(trd(ar'), N),

]-HXG]L, artxr+creNL, trd(2artx+c)eKZ (Gauss)

(N/K)2N

Since ar' + ra' = trd(ar’) € KL, we find, on replacing ar'
with —ra' in the conditions above, that

cr € ralxr + KL, trd(c) € trd(2ra'x) + KZ.
Right-multiplying the latter by r, we get
(c+ c"r = (2ra'x + 2x'ar")r = 2ra’xr mod KL.

S..(c) <

The rightmost term is = 2cr mod KIL, so we conclude that
(c" = ¢)r = 0 mod KL.
Thus if ¢g = co(a, r) := ar'hy, then c lies in the lattice
NK,r,c):={ceclL:(c—c)reKL, cr € qrZ + NL},
since arfxr + cr € NL = cr € artborZ + NL (from earlier). 15



Applying the proposition

Earlier we showed something like

Sr(ar ™)=Y w(x/Te(trd(ar x*) < > T*S,.(c)|.

x€L le[<N/T
The sum S, ,(c) is controlled by lattices of the form
NK,r,q):={ceL:(c—creKL, cr € qrZ + NL},
for some ¢y = co(a, r). Specifically, by the proposition,
K1/2

ZT(ar*I) < T4 W

K|N
ceN(K,r,c)
le|<N/T

16



Applying the proposition

Earlier we showed something like

Sr(ar ™)=Y w(x/Te(trd(ar x*) < > T*S,.(c)|.

x€L le[<N/T
The sum S, ,(c) is controlled by lattices of the form
NK,r,q):={ceL:(c—creKL, cr € qrZ + NL},
for some ¢y = co(a, r). Specifically, by the proposition,
K1/2

ZT(ar*I) < T4 W

K|N
ceN(K,r,c)
le|<N/T

It remains to analyze the lattice A(K, r, cp) for each K | N.

16



Geometry of numbers
Consider the lattices

NK,r,q):={celL:(c—c"reKL, cr € crZ + NL}.

Lemma (Arala—Getz—Hou—Hsu-Li-W. 2024)

Suppose K | N = nrd(r), where r € L is a primitive vector.
Let co € L. Then for all B > 0, we have

B2 B3 B*

#(NK,r,c)N[-B.B]*) <1+ B+

K2 T (K2 T KN

17



Geometry of numbers

Consider the lattices
NK,r,q):={celL:(c—c"reKL, cr € crZ + NL}.

Lemma (Arala—Getz—Hou—Hsu-Li-W. 2024)

Suppose K | N = nrd(r), where r € L is a primitive vector.
Let co € L. Then for all B > 0, we have

B2 B3 B*

#(NK,r,c)N[-B.B]*) <1+ B+

K2 T (K2 T KN

Proof strategy.

It suffices to lower-bound partial products of successive minima
A; [Schmidt 1968]. Use Iower bounds A\; > 1, Ao > K'/2, and
A1 A3y < |L/A| = \/\/NILI > KN, combined with the upper

bound Ay < (KN)/? to lower-bound A;ApAs. O

v

17



Earlier we showed something like

B B K1/2
Sr(ar ™) = w(x/T)e(trd(ar 'x*)) < T* N
x€L K|N
ceN(K,r,q)
lc|<N/T

By the lemma,
KY? N (N/T)* (N/T)* (N/T)*

1 4 N
Er(ar) < T NN3/2(T kiz TNyt kN )

K]

18



Earlier we showed something like

B B K1/2
Sr(ar ™) = w(x/T)e(trd(ar 'x*)) < T* N
x€L K|N
ceN(K,r,q)
lc|<N/T

By the lemma,
K72 N (N/T) (N/T)®  (N/T)*
TR (KN)2 "~ KN

Yr(ar )< T )-
KIN
Summing over K using the divisor bound gives

ZT( ) <, T4 N/\3I/2(N1/2N (N/T) (/\IIV/IZ;) (NCVT)4)

Since N = nrd(r) < |r|> < T2, it follows that
Yr(art) < T

(The proof when the quantity ged,(r) is large, rather than 1, is
more technical but still doable.)

18



Theorem (Arala—Getz—Hou—Hsu-Li-W. 2024)

Let D/Q be a quaternion algebra ramified at S O {2,00}. Fix
a maximal order Op C D and a function w € C°(D" ® R),
where n > 8. Then for vq,...,v, € {1} and T > 1,

> wlx/T)=cpuw T 2+ 0, (T°"),
x€O}: P(x)=0

where P(x) 1= v1x} + -+ + v,x2. (Asymptotic forn > 9.)

v

Estimates like X7(ar™') < T3¢ are half the proof. To obtain
the main term cp,,, T*"~8, we need to estimate sums roughly of
the shape (built out of the sums S, ,(0))

T arT X
L gt P()

4n N
075r<<T a€lL/rL xe(IL/NL)»

gedy(ar,N)=gedy(r)

where N = nrd(r).




To obtain the main term cp T4—8 \we need to estimate sums
roughly of the shape (built out of the sums S, ,(0))

1 trd(ar"P(x))
b Y e P,

076r<<T aclL/rLL x€(IL/NL)"
ged (art N)=ged; (1)

where N = nrd(r).
» This is done by spectrally expanding the sum over r in
terms of suitably (maximally) invariant automorphic

representations on (L. ® Ag)*; the invariance is maximal
because there is no cx term in S, ,(c) for ¢ = 0.

20



To obtain the main term cp T4—8 \we need to estimate sums
roughly of the shape (built out of the sums S, ,(0))

1 trd(art P(x
- Z e( ( o ( )))
076r<<T aelL/rL x€(L/NL)"
gedy (art,N)<gedy (r)
where N = nrd(r).

» This is done by spectrally expanding the sum over r in
terms of suitably (maximally) invariant automorphic
representations on (L. ® Ag)*; the invariance is maximal
because there is no cx term in S, ,(c) for ¢ = 0.

» The trivial representation leads to an Euler product
resembling (Lgo(s + 2) (with a simple pole at s = 0),
whereas the nontrivial representations are put into the
error term using the Jacquet—Langlands correspondence
(including the fact that the trivial representation for a
ramified local quaternion algebra corresponds to the
Steinberg representation on GL,).

20



What about matrices?

» The story for P(x) = 0 in My(Z) is likely quite different
than that for L.

» However, a Duke—Friedlander—Iwaniec type delta symbol
expansion* may well allow one to count solutions to
det(P(x)) = 0; note that nrd(P(x)) =0« P(x) =0ina
division algebra, but not in a split matrix algebra.

> If so, that might involve Cu,(q)(s + 2) = ((s +2)¢(s + 1)
(with simple poles at s = —1,0). The additional pole may
lead to a main term of size T%"~° rather than 747785

“like what we used in [Arala—Getz—Hou—Hsu-Li-W. 2024] for technical
convenience, although the present slides are written more classically

5To explain where this comes from would require reworking our
previous discussion to account for differences between circle method and
delta method setups (the latter involves a difference of two un-sieved

divisor problems, thus requiring additional cancellation of poles).
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What about bigger algebras? Let d € {2,3}, r € My(Z), and
T =< |r] > 0, with |det(r)| prime and |det(r)| =< |r|9.

Theorem (Arala—W. 2025+)
Let w € C°(My(R)). If a € My(Z) \ My(Z)r, then

Yr(ar ) = Z w(x/T)e(tr(ar *x%)) <. Te -2+,
XGMC/(Z)

y

Averaging over a € My(Z)/My(Z)r (“polygon method") gives:

Theorem (Arala—W. 2025+)
Let w € C(My(R)™). If b € My(Z), then

C TdZn 2_d
T) = =" 4 O (T 72)mFe),
S T = o+ Ol )
x€EMy(Z)"
s+ x2—berMy(Z)
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Generalizing from d = 2
Let N = det(r) < |r|? < T9. We have something like
Tr(ar )= Y wlx/Te(tr(ar ) < Y T¥S,.(c)
xeMy(Z) le|<N/T
by Poisson summation in My(Z/NZ) x My(R), where
1 tr(aadj(r)x® + cx)

Sa,r(c) = NP Z e( N )s

xEMy(Z/NZ)

where adj(r)r = N. Averaging over shifts x — x + ry gives

1 Z e(tr(aadj(r)x + cx)).

N
xEMy4(Z/NZ): aadj(r)xr+cr=0

By Cartan decomposition, # im(x ~— adj(r)xr) = N91.
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Generalizing from d = 2 (further cancellation)

Assume S, ,(c) # 0. From the previous slide, we have

5 .(c) = % Z e(tr(aadj(r/\)lx + cx))7

x€My(Z/NZ): aadj(r)xr+cr=0
which vanishes unless cr € aadj(r)My(Z)r + NM4(Z). So
#{x € My(Z/NZ) : aadj(r)xr+cr = 0} = # ker(x — aadj(r)xr).

But 0 # rank(aadj(r) mod N) < rank(adj(r) mod N) =1, so
aadj(r) and adj(r) lie in the same Cartan decomposition class
modulo N, so

# ker(x — aadj(r)xr) = # ker(x — adj(r)xr) =
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Generalizing from d = 2 (further cancellation)

Assume S, ,(c) # 0. From the previous slide, we have
1

tr(aadj(r)x® + cx)
Sar(c) = g Z e( N ),
x€My(Z/NZ): aadj(r)xr+cr=0
which vanishes unless cr € aadj(r)My(Z)r + NM4(Z). So
#{x € My(Z/NZ) : aadj(r)xr+cr = 0} = # ker(x — aadj(r)xr).

But 0 # rank(aadj(r) mod N) < rank(adj(r) mod N) =1, so
aadj(r) and adj(r) lie in the same Cartan decomposition class
modulo N, so

d2

Nd-1 ’

# ker(x — aadj(r)xr) = # ker(x — adj(r)xr) =
Average over x + Z. If K = gcd(tr(aadj(r)), N),

lﬂxe My(Z), aadj(r)xr+creNMy(Z), tr(2aadj(r)x+c)eKZ

Sar(c) < (N/K)/2Nd-1

(Gauss).
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Geometry of numbers

For each K | N, we have a lattice

Nar(K) i={c € My(Z) : Ix € My(Z), aadj(r)xr + cr € NMy(Z),
tr(2aadj(r)x + ¢) € KZ}.

It can be shown that
adj(r)(2¢c — tr(c)) = 0 mod KMy(Z)

but this seems to be less useful than it was for d = 2. We have
many successive minima to deal with, since rank A, ,(K) = d°.

25



Geometry of numbers
For each K | N, we have a lattice
Nar(K) i={c € My(Z) : Ix € My(Z), aadj(r)xr + cr € NMy(Z),
tr(2aadj(r)x + ¢) € KZ}.
It can be shown that
adj(r)(2c —tr(c)) = 0 mod KM,(Z)

but this seems to be less useful than it was for d = 2. We have
many successive minima to deal with, since rank A, ,(K) = d°.
We will use Mahler's transference theorem

XA A(K))Ade—iv1(Aar(K)) =a 1,

which is like applying Poisson summation (again! but we took

absolute values after the first Poisson, so this is not circular).
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The dual lattice
By definition, A* = {f € My(Q) : tr(fc) € Z Vc € N} and
Nar(K) i={c € My(Z) : Ix € My(Z), aadj(r)xr + cr € NMy(Z),
tr(2aadj(r)x + ¢) € KZ}.
Parameterizing ¢ = y adj(r) — aadj(r)x with x,y € My(Z), we

see that the mod-K hyperplane K | tr(aadj(r)x + y adj(r))
cuts out A, (K).
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The dual lattice

By definition, A* = {f € My(Q) : tr(fc) € Z Vc € N} and
Nar(K) i={c € My(Z) : Ix € My(Z), aadj(r)xr + cr € NMy(Z),
tr(2aadj(r)x + ¢) € KZ}.

Parameterizing ¢ = y adj(r) — aadj(r)x with x,y € My(Z), we

see that the mod-K hyperplane K | tr(aadj(r)x + y adj(r))

cuts out A, ,(K). We may decouple this from the mod-1

hyperplane tr(fc) € Z; by duality, the mod-1 hyperplane

contains the mod-K hyperplane if and only if

My(Z)? + (—faadj(r), adj(r)f)Z C My(Z)? + (2252, 240y 7,

In particular, this implies 6 := Nf € rMy(Z) + RZ C My(Z). It

follows upon writing f = /N that

NA:,(K) = {6 € My(Z) : 3u € Z, (5 + ¥ p)aadj(r) € NMy(Z),
adj(r)(6 — Xp) € NMy(Z)}.
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Eigenvalue repulsion argument

Lemma
If 6 € My(Z) and ged(2u, N) = 1 with 0 < |§| < €|r| and

(6 4+ p)aadj(r),adj(r)(d — u) € NMy(Z),

then |p| > eNY/2. (Prime N = |det(r)| < |r|.)

Proof.
We have rank(d £+ p mod N) < d — 1, so for some z € Z

det(t —9) = (t — p)(t + p)(t — z) mod N.
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Eigenvalue repulsion argument

Lemma
If 6 € My(Z) and ged(2u, N) = 1 with 0 < |§| < €|r| and

(6 4+ p)aadj(r),adj(r)(d — u) € NMy(Z),

then |p| > eNY/2. (Prime N = |det(r)| < |r|.)

Proof.
We have rank(d £+ p mod N) < d — 1, so for some z € Z

det(t —9) = (t — p)(t + p)(t — z) mod N.

So 1% = —tr(A2%) < |02 < N9 mod N. If |u| < eNY/2,
then || = |tr(A26)[*2. Now |adj(r)(§ — p)| < |r]97Y6] < €N,
so adj(r)(0 — p) = 0, whence 6 = p. But then we find that
2uaadj(r) € NMy(Z), so a € My(Z)r; a contradiction. O

v
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Schmidt backwards

The lemma implies that the set of integers u € Z associated to

vectors 0 € NA; (K) with [3] < €|r| is > eK'/?-spaced. (This

is trivial if K =1.)

NN, (K) = {0 € My(Z) : 3p € Z, (6 + Rp)aadj(r) € NMy(Z),
adj(r)(6 — % p) € NMy(Z)}.

But for any u € Z, we have

C. = #{|0| < €|r| : adj(r)(0 — %u) € NMy(2)} < Cp < 1,

r|d* =i
so K12 > #{5 € NA;,(K) : 0] < ¢|r]} > (M..Adl_'j)(NA;,,(K))
- (Ad2"'/\j+1)(/\a,r(

e N for all 0 < j < d?, by Schmidt and Mahler.
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Schmidt backwards

The lemma implies that the set of integers u € Z associated to
vectors 0 € NA; (K) with [3] < €|r| is > eK'/?-spaced. (This
is trivial if K =1.)

NN, (K) = {0 € My(Z) : 3p € Z, (6 + Rp)aadj(r) € NMy(Z),
adj(r)(6 — % p) € NMy(Z)}.

But for any u € Z, we have

C. = #{|0] < €|r| - adj(r)(0 — Rp) € NMy(Z)} < Co < 1,

2 .
[P

so K23 #{5 € NA; (K) : 6] < elrl} > o yavmen
- (Ad2"'/\j+1)(/\a,r(

e N for all 0 < j < d?, by Schmidt and Mahler.
But (A1 -~ Ag2) (A, (K)) =< K(N/T)¥*~¢ (volume calculation),

K(N/T)*—4 -
so (A1 N)(Aar(K)) > Kl/(z(//v?r)ﬁ—f = KY2(N/Ty-4.
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Schmidt forwards
Since (A1 -+ \)(Aa (K)) > KY2(N/T)Y~9, Schmidt gives
#lee A (K) el < N/TH< Y Kl/gl(vl\/l/?fy_d < (A;(/IZ) _

0<j<d?
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Schmidt forwards
Since (A1 -+ \)(Aa (K)) > KY2(N/T)Y~9, Schmidt gives

#le e har(K) el S N/TY< Y7

(N/TY (N/T)?

2(N/T)—d < K1/2

0<j<d?

Since S, ,(c) is controlled by lattice conditions ¢ € A, (K, we
have something like

Yr(ar™) = Z w(x/T)e(tr(ar *x?))

XEMd(Z)
< Y TS, (<)l
le|<N/T

T (N/T)
<<Z (N/K)/2Nd-1 K172
KIN

This is < T%~%, since N = det(r) < |r|? < T7.

< sz—dN1/2‘
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We have proved the following. Let d € {2,3}, r € My(Z), and
T =< |r] > 0, with |det(r)| prime and |det(r)| =< |r|9.

Theorem (Arala—W. 2025+)
Let w € C°(My(R)). If a € My(Z) \ My(Z)r, then

Yr(ar ) = Z w(x/T)e(tr(ar *x%)) <. Te -2+,
XGMC/(Z)

y

Averaging over a € My(Z)/My(Z)r (“polygon method") gives:

Theorem (Arala—W. 2025+)
Let w € C(My(R)™). If b € My(Z), then

C TdZn 2_d
T) = =" 4 O (T 72)mFe),
S T = o+ Ol )
x€EMy(Z)"
s+ x2—berMy(Z)
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Some questions

» What about using Weyl differencing instead of Poisson
summation? (It looks messy, but maybe...?)

» How does this all relate to the incomplete Eisenstein series

perspective of [Nelson, Leung—Young] that we saw
yesterday?
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