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Some matrix equations

Let Md(R) be the set of d × d matrices with entries in R .

▶ XY = YX , where X ,Y ∈ Md(Z). This is interesting for
d ≥ 2 (nonabelian). The number of pairs with entries in
[−T ,T ] as T → ∞ is studied in [Browning–Sawin–W.
2024, Mudgal 2024, Chapman–Mudgal 2025].

▶ X d = A, where X ∈ Md(Z). Again, something interesting
happens for d ≥ 2. For typical A, such as if det(A) ̸= □d ,
this has no solutions. How about special A? For scalar
A = kId with k ∈ Z, this has ∼ ckT

d(d−1)/2 solutions as
T → ∞ [Eskin–Mozes–Shah 1996].1

▶ This talk will concentrate on nonabelian sums of n squares,
especially the best error term as n → ∞ (Weyl sums).

1One can also study other asymptotic aspects of the point count, such
as Cesàro convergence over k when T ≍ |k |1/d . See results on the Linnik
problem in [Einsiedler–Lindenstrauss–Michel–Venkatesh 2011].
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Theorem (Arala–Getz–Hou–Hsu–Li–W. 2024)

Let D/Q be a quaternion algebra ramified at S ⊇ {2,∞}. Fix
a maximal order OD ⊂ D and a function w ∈ C∞

c (Dn ⊗ R),
where n ≥ 8. Then for υ1, . . . , υn ∈ {±1} and T ≥ 1,∑

x∈On
D :P(x)=0

w(x/T ) = cP,wT
4n−8 + Ow ,ϵ(T

3n+ϵ),

where P(x) := υ1x
2
1 + · · ·+ υnx

2
n . (Asymptotic for n ≥ 9.)

Previously an asymptotic was available for n ≥ 17, thanks to
Myerson’s 2018 strengthening of Birch’s 1962 classical result.

Remark
The solutions to the aforementioned equation X d = Id for
X ∈ Md(Z) break up into finitely many GLd(Z)-conjugation
orbits. But the equations XY = YX and P(x) = 0 seem to
lack such a nearly-transitive group action.
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For concreteness, one could take D = Q+Qi +Qj +Qk to be
Hamilton’s classical quaternions, with

i2 = j2 = k2 = ijk = −1 (Broome Bridge, Dublin, 1843),

and OD = Z1+i+j+k
2

+ Zi + Zj + Zk the Hurwitz quaternions
(1919).

Issues with zerodivisors currently prevent us from
taking D = M2(Q) and OD = M2(Z) in the previous theorem.
However, we have the following level-of-distribution result:

Theorem (Arala–W. 2025+)

Let d ∈ {2, 3} and w ∈ C∞
c (Md(R)n). If b, r ∈ Md(Z) and

T ≍ |r | > 0 with |det(r)| prime and |det(r)| ≍ |r |d , then

∑
x∈Md (Z)n

x2
1 +···+x2

n−b∈rMd (Z)

w(x/T ) =
cwT

d2n

|det(r)|d
+ Ow ,ϵ(T

(d2− d
2

)n+ϵ).

Asymptotic for n ≥ 2d +1. Previously n > d2(d2 +1)/(2d − 2)
available by [Birch 1962, Yamagishi 2023]?
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Rough idea of the algebraic circle method

Let A be a free Z-module of finite rank. Fix a Z-bilinear2 map
µ : A× A → A, a Z-linear map tr : A → Z, and a vector norm
|·| : A⊗ R → R≥0. Let e(t) := e2πit for t ∈ R. If x ∈ A, then

1x=0 =

∫
(A⊗R)/A

e(θ1x1 + · · ·+ θrankAxrankA) dθ

=

∫
(A⊗R)/A

e(tr(θx)) dθ,

provided that the pairing tr ◦µ : A× A → Z is perfect.3

Proposition (Algebraic Dirichlet-type covering)

Let θ ∈ A⊗ R and Q ≥ 1. Then there exists (a, r) ∈ A2 such
that 0 ̸= |r | ≪ Q and |θr − a| ≪ 1/Q.

2Thus A is distributive, but not necessarily commutative or associative.
3For non-degenerate tr ◦µ, the second (A⊗ R)/A needs adjustment.

5



Rough idea of the algebraic circle method

Let A be a free Z-module of finite rank. Fix a Z-bilinear2 map
µ : A× A → A, a Z-linear map tr : A → Z, and a vector norm
|·| : A⊗ R → R≥0. Let e(t) := e2πit for t ∈ R. If x ∈ A, then

1x=0 =

∫
(A⊗R)/A

e(θ1x1 + · · ·+ θrankAxrankA) dθ

=

∫
(A⊗R)/A

e(tr(θx)) dθ,

provided that the pairing tr ◦µ : A× A → Z is perfect.3

Proposition (Algebraic Dirichlet-type covering)

Let θ ∈ A⊗ R and Q ≥ 1. Then there exists (a, r) ∈ A2 such
that 0 ̸= |r | ≪ Q and |θr − a| ≪ 1/Q.

2Thus A is distributive, but not necessarily commutative or associative.
3For non-degenerate tr ◦µ, the second (A⊗ R)/A needs adjustment.

5



Quadratic Weyl sums over Z (classical)

Fix w ∈ C∞
c (R). Let a, r ∈ Z \ {0} with gcd(a, r) = 1. Let

1 ≤ T ≤ |r |. Writing e(θ) := e2πiθ for θ ∈ R, we have

ΣT (a/r) :=
∑
x∈Z

w(x/T )e(ax2/r) =
∑
c∈Z

Ir (c)Sa,r (c)

by Poisson summation, where Ir (c) =
∫
R w(x/T )e(−cx/r) dx

and Sa,r (c) =
1
r

∑
x∈Z/rZ e(

ax2+cx
r

).

▶ Integration by parts: Ir (c) ≪A
T

|Tc/r |A for all A > 0.

▶ Squaring and differencing: Sa,r (c) ≪ 1
|r |1/2 (Gauss).

Thus ΣT (a/r) ≪A
T

|r |1/2

∑
c∈Z min(1, |Tc/r |−A) ≪A

T
|r |1/2 |r/T |,

essentially coming from |c | ≤ |r/T |. So: ΣT (a/r) ≪ |r |1/2. (I
think this is essentially sharp for all T ≥ r 1/2+ϵ, if a = 1.)
▶ This is square-root cancellation if T ≍ |r |.
▶ The sums ΣT (θ), for θ ∈ R/Z, appear in problems such as

counting integer solutions to quadratic equations.
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Quadratic Weyl sums over Z[i ] (classical)
Fix w ∈ C∞

c (C). Let a, r ∈ Z[i ] \ {0} with |gcd(a, r)| = 1. Let
1 ≤ T ≤ |r |. Directly adapting to Z[i ] the slide for Z gives

ΣT (a/r) :=
∑
x∈Z[i ]

w(x/T )e(tr(ar−1x2)) ≪ |Z[i ]/rZ[i ]|1/2 = |r |.

Again, this is square-root cancellation over x if T ≍ |r |.

▶ Key to this generalization is that r ∈ Center(Z[i ]), so that
e(tr(ar−1x2)) depends only on x mod r ∈ Z[i ]/rZ[i ].

▶ However, as an exponential sum over Z2, the quantity
ΣT (a/r) has modulus |r |2, rather than |r |. Thus, by
packaging Z2 into Z[i ], we are able to get square-root
cancellation over x much shorter than the modulus.

▶ The sums ΣT (θ) appear when counting solutions to
quadratic equations in Z[i ], or equivalently, to a pair of
quadratic equations (the Weil restriction) in Z.
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Weil restriction in analytic number theory
▶ For the general story over rings of integers OK of global

fields K , see e.g. [Skinner 1997, Browning–Vishe 2014].
▶ Difficult variants of the packaging idea include generalized

quadratic forms over K , which involve conjugated variables
σ(x), and are not just quadratic forms over the number
field [Browning–Pierce–Schindler 2022].

Related examples of Weil restriction or similar packaging:
▶ Solving x3 = y 2 + 2 (Fermat; Euler using Z[

√
−2]).

▶ Skolem’s method for Thue equations like x3 + 2y 3 = k .
▶ Prime values of restricted norm forms like x2 + y 4 or

x3 + 2y 3; see e.g. [Friedlander–Iwaniec 1998, Heath-Brown
2001, . . . , Maynard 2020, Green–Sawhney 2024].

▶ Linear spaces on hypersurfaces [Brandes 2014].
▶ Counting Fq[t][s]/s

m+1- and Fq[t][s, r ]/(s
m+1, r 2)-points

on hypersurfaces to study singularities on the moduli
spaces of curves thereof [Glas–Hase-Liu 2024].
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Quadratic Weyl sums over Z⟨i , j⟩ (i2 = j2 = −1)

Let L = Z⟨i , j⟩ = Z+ Zi + Zj + Zk . Fix w ∈ C∞
c (L⊗ R).

Given x = x1 + x2i + x3j + x4k , let x
† := x1 − x2i − x3j − x4k ,

trd(x) := x† + x = 2x1, and nrd(x) := x†x = x2
1 + · · ·+ x2

4 .

Theorem (Arala–Getz–Hou–Hsu–Li–W. 2024)

Let a, r ∈ L \ {0} with gcdZ(ar
†, nrd(r)) ≍ gcdZ(r),

a where
gcd is computed in Z5 and in Z4, respectively. If T ≍ |r |, then

ΣT (ar
−1) :=

∑
x∈L

w(x/T )e(trd(ar−1x2)) ≪ϵ T
3+ϵ.

aFor example, take nrd(r) square-free and gcd(nrd(a),nrd(r)) = 1.

Are there near-equality cases? If trd(ar−1) ∈ Z, or equivalently
trd(ar †) ≡ 0 mod nrd(r), then the contribution to ΣT (ar

−1)
from trd(x) = 0 is of size T 3 (no oscillation).
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Theorem (Arala–Getz–Hou–Hsu–Li–W. 2024)

Let a, r ∈ L \ {0} with gcdZ(ar
†, nrd(r)) ≍ gcdZ(r). If

T ≍ |r |, then

ΣT (ar
−1) :=

∑
x∈L

w(x/T )e(trd(ar−1x2)) ≪ϵ T
3+ϵ.

The proof uses Fourier analysis, Cartan decomposition, matrix
identities, Gauss sums, and the geometry of numbers. Crucially,
the vector ar−1 ∈ Q+Qi +Qj +Qk is rather special:

ar−1 =
ar †

nrd(r)
=

b1 + b2i + b3j + b4k

nrd(r)
,

say, where (b1, b2, b3, b4) ∈ Z4 satisfies

b2
1 + · · ·+ b2

4 = nrd(ar †) ≡ 0 mod nrd(r).

Contrast with the classical 4-dimensional circle method, whose
fractions have smaller denominator but lack algebraic structure.
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Poisson summation

Let a, r ∈ L \ {0} and T ≍ |r |. Then

ΣT (ar
−1) :=

∑
x∈L

w(x/T )e(trd(ar−1x2)) =
∑
c∈L

Ir (c)Sa,r (c)

by Poisson summation in (Z4/nrd(r)Z4)× R4, where

Ir (c) =

∫
L⊗R

w(x/T )e(−trd(cx)

nrd(r)
) dx ,

Sa,r (c) =
1

nrd(r)4

∑
x∈L/nrd(r)L

e(
trd(ar †x2 + cx)

nrd(r)
).

Since r /∈ Center(L), the sum in Sa,r (c) is genuinely over
L/nrd(r)L, not just over L/rL.

Integration by parts gives
Ir (c) ≪A

T 4

|Tc/nrd(r)|A for all A > 0. Thus we may pretend that

|c | ≤ nrd(r)/T .

But nrd(r)/T ≍ |r |2/T ≍ T . Should we give up?
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Local estimates and vanishing phenomena

Proposition (Arala–Getz–Hou–Hsu–Li–W. 2024)

Assume gcdZ(r) = 1 and 2 ∤ N = nrd(r). Let c ∈ L.
1. If Sa,r (c) ̸= 0, there exists c0 = c0(a, r) ∈ L such that

cr ∈ c0rZ+ NL. (We can take c0 = ar †b0 for any
sufficiently generic b0 = b0(r) ∈ L.)

2. Assume gcdZ(ar
†,N) = 1. Let K ≥ 1 be the largest

divisor of N such that (c − c†)r ∈ KL. Then

Sa,r (c) ≪
K 1/2

N3/2
.

Thus the sum Sa,r (c) is controlled by lattices of the form

Λ(K , r , c0) := {c ∈ L : (c − c†)r ∈ KL, cr ∈ c0rZ+ NL}.
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Proof of proposition (non-vanishing constraint)

Assume gcdZ(r) = 1 and 2 ∤ N = nrd(r). By definition,

Sa,r (c) =
1

N4

∑
x∈L/NL

e(
trd(ar †x2 + cx)

N
),

Since r /∈ Center(L), the sum over x is usually not rL-periodic.
To quantify the failure of periodicity, we replace x with x + ry
and average over y ∈ L, getting

Sa,r (c) =
1

N8

∑
x ,y∈L/NL

e(
trd(ar †x(x + ry) + c(x + ry))

N
)

=
1

N4

∑
x∈L/NL: ar†xr+cr≡0

e(
trd(ar †x2 + cx)

N
).

Some pair of Z-module isomorphisms L/NL → M2(Z/NZ)
sends the map x 7→ r †xr to m 7→ [ N 0

0 1 ]m [ 1 0
0 N ] ≡

[
0 0

m21 0

]
.

Thus x 7→ r †xr has image r †b0rZ mod NL for some b0 ∈ L. . .

13
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Proof of proposition (further cancellation)

Assume Sa,r (c) ̸= 0. From the previous slide, we have

Sa,r (c) =
1

N4

∑
x∈L/NL: ar†xr+cr≡0

e(
trd(ar †x2 + cx)

N
),

which vanishes (empty sum) unless cr ∈ ar †b0rZ+ NL. So
#{x ∈ L/NL : ar †xr + cr ≡ 0} = #ker(x 7→ ar †xr).

If gcdZ(ar
†,N) = 1, then ar † and r † lie in the same Cartan

decomposition class modulo N , so

# ker(x 7→ ar †xr) = #ker(x 7→ r †xr) =
N4

# im(x 7→ r †xr)
= N3.

To improve on the triangle inequality |Sa,r (c)| ≤ 1
N
, replace x
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Proof of proposition (further cancellation)
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N
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Proof of proposition (lattice simplification)

From the previous slide, if K = gcd(trd(ar †),N),

Sa,r (c) ≪
1∃x∈L, ar†xr+cr∈NL, trd(2ar†x+c)∈KZ

(N/K )1/2N
(Gauss).

Since ar † + ra† = trd(ar †) ∈ KL, we find, on replacing ar †

with −ra† in the conditions above, that

cr ∈ ra†xr + KL, trd(c) ∈ trd(2ra†x) + KZ.

Right-multiplying the latter by r , we get

(c + c†)r ≡ (2ra†x + 2x†ar †)r ≡ 2ra†xr mod KL.
The rightmost term is ≡ 2cr mod KL, so we conclude that

(c† − c)r ≡ 0 mod KL.
Thus if c0 = c0(a, r) := ar †b0, then c lies in the lattice

Λ(K , r , c0) := {c ∈ L : (c − c†)r ∈ KL, cr ∈ c0rZ+ NL},
since ar †xr + cr ∈ NL ⇒ cr ∈ ar †b0rZ+ NL (from earlier).
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Applying the proposition

Earlier we showed something like

ΣT (ar
−1) :=

∑
x∈L

w(x/T )e(trd(ar−1x2)) ≪
∑

|c|≤N/T

T 4|Sa,r (c)|.

The sum Sa,r (c) is controlled by lattices of the form

Λ(K , r , c0) := {c ∈ L : (c − c†)r ∈ KL, cr ∈ c0rZ+ NL},

for some c0 = c0(a, r). Specifically, by the proposition,

ΣT (ar
−1) ≪ T 4

∑
K |N

c∈Λ(K ,r ,c0)
|c|≤N/T

K 1/2

N3/2
.

It remains to analyze the lattice Λ(K , r , c0) for each K | N .
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Geometry of numbers

Consider the lattices

Λ(K , r , c0) := {c ∈ L : (c − c†)r ∈ KL, cr ∈ c0rZ+ NL}.

Lemma (Arala–Getz–Hou–Hsu–Li–W. 2024)

Suppose K | N = nrd(r), where r ∈ L is a primitive vector.
Let c0 ∈ L. Then for all B > 0, we have

#(Λ(K , r , c0) ∩ [−B ,B]4) ≪ 1 + B +
B2

K 1/2
+

B3

(KN)1/2
+

B4

KN
.

Proof strategy.
It suffices to lower-bound partial products of successive minima
λi [Schmidt 1968]. Use lower bounds λ1 ≫ 1, λ2 ≫ K 1/2, and
λ1λ2λ3λ4 ≍ |L/Λ| = N4

|Λ/NL| ≫ KN , combined with the upper

bound λ4 ≪ (KN)1/2 to lower-bound λ1λ2λ3.
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Earlier we showed something like

ΣT (ar
−1) :=

∑
x∈L

w(x/T )e(trd(ar−1x2)) ≪ T 4
∑
K |N

c∈Λ(K ,r ,c0)
|c|≤N/T

K 1/2

N3/2
.

By the lemma,

ΣT (ar
−1) ≪ T 4

∑
K |N

K 1/2

N3/2
(
N

T
+
(N/T )2

K 1/2
+
(N/T )3

(KN)1/2
+
(N/T )4

KN
).

Summing over K using the divisor bound gives

ΣT (ar
−1) ≪ϵ T

4 Nϵ

N3/2
(N1/2N

T
+(N/T )2+

(N/T )3

N1/2
+
(N/T )4

N
).

Since N = nrd(r) ≍ |r |2 ≍ T 2, it follows that

ΣT (ar
−1) ≪ϵ T

3+ϵ.

(The proof when the quantity gcdZ(r) is large, rather than 1, is
more technical but still doable.)
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Theorem (Arala–Getz–Hou–Hsu–Li–W. 2024)

Let D/Q be a quaternion algebra ramified at S ⊇ {2,∞}. Fix
a maximal order OD ⊂ D and a function w ∈ C∞

c (Dn ⊗ R),
where n ≥ 8. Then for υ1, . . . , υn ∈ {±1} and T ≥ 1,∑

x∈On
D :P(x)=0

w(x/T ) = cP,wT
4n−8 + Ow ,ϵ(T

3n+ϵ),

where P(x) := υ1x
2
1 + · · ·+ υnx

2
n . (Asymptotic for n ≥ 9.)

Estimates like ΣT (ar
−1) ≪ϵ T

3+ϵ are half the proof. To obtain
the main term cP,wT

4n−8, we need to estimate sums roughly of
the shape (built out of the sums Sa,r (0))

T 4n

(T 2)4

∑
0̸=r≪T

∑
a∈L/rL

gcdZ(ar†,N)≍gcdZ(r)

1

N4n

∑
x∈(L/NL)n

e(
trd(ar †P(x))

N
)

where N = nrd(r). 19



To obtain the main term cP,wT
4n−8, we need to estimate sums

roughly of the shape (built out of the sums Sa,r (0))

T 4n

(T 2)4

∑
0̸=r≪T

∑
a∈L/rL

gcdZ(ar†,N)≍gcdZ(r)

1

N4n

∑
x∈(L/NL)n

e(
trd(ar †P(x))

N
)

where N = nrd(r).
▶ This is done by spectrally expanding the sum over r in

terms of suitably (maximally) invariant automorphic
representations on (L⊗ AQ)

×; the invariance is maximal
because there is no cx term in Sa,r (c) for c = 0.

▶ The trivial representation leads to an Euler product
resembling ζL⊗Q(s +

3
2
) (with a simple pole at s = 0),

whereas the nontrivial representations are put into the
error term using the Jacquet–Langlands correspondence
(including the fact that the trivial representation for a
ramified local quaternion algebra corresponds to the
Steinberg representation on GL2).
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What about matrices?

▶ The story for P(x) = 0 in M2(Z) is likely quite different
than that for L.

▶ However, a Duke–Friedlander–Iwaniec type delta symbol
expansion4 may well allow one to count solutions to
det(P(x)) = 0; note that nrd(P(x)) = 0 ⇔ P(x) = 0 in a
division algebra, but not in a split matrix algebra.

▶ If so, that might involve ζM2(Q)(s +
3
2
) = ζ(s + 2)ζ(s + 1)

(with simple poles at s = −1, 0). The additional pole may
lead to a main term of size T 4n−6 rather than T 4n−8.5

4like what we used in [Arala–Getz–Hou–Hsu–Li–W. 2024] for technical
convenience, although the present slides are written more classically

5To explain where this comes from would require reworking our
previous discussion to account for differences between circle method and
delta method setups (the latter involves a difference of two un-sieved
divisor problems, thus requiring additional cancellation of poles).
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What about bigger algebras? Let d ∈ {2, 3}, r ∈ Md(Z), and
T ≍ |r | > 0, with |det(r)| prime and |det(r)| ≍ |r |d .

Theorem (Arala–W. 2025+)

Let w ∈ C∞
c (Md(R)). If a ∈ Md(Z) \Md(Z)r , then

ΣT (ar
−1) :=

∑
x∈Md (Z)

w(x/T )e(tr(ar−1x2)) ≪ϵ T
d2− d

2
+ϵ.

Averaging over a ∈ Md(Z)/Md(Z)r (“polygon method”) gives:

Theorem (Arala–W. 2025+)

Let w ∈ C∞
c (Md(R)n). If b ∈ Md(Z), then∑

x∈Md (Z)n

x2
1 +···+x2

n−b∈rMd (Z)

w(x/T ) =
cwT

d2n

|det(r)|d
+ Ow ,ϵ(T

(d2− d
2

)n+ϵ).

22



Generalizing from d = 2

Let N = det(r) ≍ |r |d ≍ T d . We have something like

ΣT (ar
−1) :=

∑
x∈Md (Z)

w(x/T )e(tr(ar−1x2)) ≪
∑

|c|≤N/T

T d2|Sa,r (c)|

by Poisson summation in Md(Z/NZ)×Md(R), where

Sa,r (c) =
1

Nd2

∑
x∈Md (Z/NZ)

e(
tr(a adj(r)x2 + cx)

N
),

where adj(r)r = N . Averaging over shifts x 7→ x + ry gives

Sa,r (c) =
1

Nd2

∑
x∈Md (Z/NZ): a adj(r)xr+cr≡0

e(
tr(a adj(r)x2 + cx)

N
).

By Cartan decomposition, # im(x 7→ adj(r)xr) = Nd−1.
23



Generalizing from d = 2 (further cancellation)

Assume Sa,r (c) ̸= 0. From the previous slide, we have

Sa,r (c) =
1

Nd2

∑
x∈Md (Z/NZ): a adj(r)xr+cr≡0

e(
tr(a adj(r)x2 + cx)

N
),

which vanishes unless cr ∈ a adj(r)Md(Z)r + NMd(Z). So
#{x ∈ Md(Z/NZ) : a adj(r)xr+cr ≡ 0} = #ker(x 7→ a adj(r)xr).

But 0 ̸= rank(a adj(r) mod N) ≤ rank(adj(r) mod N) = 1, so
a adj(r) and adj(r) lie in the same Cartan decomposition class
modulo N , so

# ker(x 7→ a adj(r)xr) = #ker(x 7→ adj(r)xr) =
Nd2

Nd−1
.

Average over x + Z. If K = gcd(tr(a adj(r)),N),

Sa,r (c) ≪
1∃x∈Md (Z), a adj(r)xr+cr∈NMd (Z), tr(2a adj(r)x+c)∈KZ

(N/K )1/2Nd−1
(Gauss).
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Geometry of numbers

For each K | N , we have a lattice

Λa,r (K ) := {c ∈ Md(Z) : ∃x ∈ Md(Z), a adj(r)xr + cr ∈ NMd(Z),
tr(2a adj(r)x + c) ∈ KZ}.

It can be shown that

adj(r)(2c − tr(c)) ≡ 0 mod KMd(Z)

but this seems to be less useful than it was for d = 2. We have
many successive minima to deal with, since rank Λa,r (K ) = d2.

We will use Mahler’s transference theorem

λi(Λ
∗
a,r (K ))λd2−i+1(Λa,r (K )) ≍d 1,

which is like applying Poisson summation (again! but we took
absolute values after the first Poisson, so this is not circular).
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The dual lattice

By definition, Λ∗ = {f ∈ Md(Q) : tr(fc) ∈ Z ∀c ∈ Λ} and

Λa,r (K ) := {c ∈ Md(Z) : ∃x ∈ Md(Z), a adj(r)xr + cr ∈ NMd(Z),
tr(2a adj(r)x + c) ∈ KZ}.

Parameterizing c = y adj(r)− a adj(r)x with x , y ∈ Md(Z), we
see that the mod-K hyperplane K | tr(a adj(r)x + y adj(r))
cuts out Λa,r (K ).

We may decouple this from the mod-1
hyperplane tr(fc) ∈ Z; by duality, the mod-1 hyperplane
contains the mod-K hyperplane if and only if

Md(Z)2 + (−fa adj(r), adj(r)f )Z ⊆ Md(Z)2 + (a adj(r)
K

, adj(r)
K

)Z.
In particular, this implies δ := Nf ∈ rMd(Z) + N

K
Z ⊆ Md(Z). It

follows upon writing f = δ/N that

NΛ∗
a,r (K ) = {δ ∈ Md(Z) : ∃µ ∈ Z, (δ + N

K
µ)a adj(r) ∈ NMd(Z),

adj(r)(δ − N
K
µ) ∈ NMd(Z)}.
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Eigenvalue repulsion argument

Lemma
If δ ∈ Md(Z) and gcd(2µ,N) = 1 with 0 < |δ| ≤ ϵ|r | and

(δ + µ)a adj(r), adj(r)(δ − µ) ∈ NMd(Z),

then |µ| ≥ ϵN1/2. (Prime N = |det(r)| ≍ |r |d .)

Proof.
We have rank(δ ± µ mod N) ≤ d − 1, so for some z ∈ Z

det(t − δ) ≡ (t − µ)(t + µ)(t − z) mod N .

So µ2 ≡ − tr(∧2δ) ≪ |δ|2 ≪ ϵ2N2/d mod N . If |µ| ≤ ϵN1/2,
then |µ| = |tr(∧2δ)|1/2. Now |adj(r)(δ−µ)| ≪ |r |d−1|δ| ≪ ϵN ,
so adj(r)(δ − µ) = 0, whence δ = µ. But then we find that
2µa adj(r) ∈ NMd(Z), so a ∈ Md(Z)r ; a contradiction.
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Schmidt backwards

The lemma implies that the set of integers µ ∈ Z associated to
vectors δ ∈ NΛ∗

a,r (K ) with |δ| ≤ ϵ|r | is ≥ ϵK 1/2-spaced. (This
is trivial if K = 1.)

NΛ∗
a,r (K ) = {δ ∈ Md(Z) : ∃µ ∈ Z, (δ + N

K
µ)a adj(r) ∈ NMd(Z),

adj(r)(δ − N
K
µ) ∈ NMd(Z)}.

But for any µ ∈ Z, we have

Cµ := #{|δ| ≪ ϵ|r | : adj(r)(δ − N
K
µ) ∈ NMd(Z)} ≪ C0 ≪ 1,

so K 1/2 ≫ #{δ ∈ NΛ∗
a,r (K ) : |δ| ≪ ϵ|r |} ≫ |r |d2−j

(λ1···λd2−j )(NΛ∗
a,r (K))

≍ (λd2 ···λj+1)(Λa,r (K))

(N/T )d2−j
for all 0 ≤ j ≤ d2, by Schmidt and Mahler.

But (λ1 · · ·λd2)(Λa,r (K )) ≍ K (N/T )d
2−d (volume calculation),

so (λ1 · · ·λj)(Λa,r (K )) ≫ K(N/T )d
2−d

K1/2(N/T )d2−j
= K 1/2(N/T )j−d .
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so K 1/2 ≫ #{δ ∈ NΛ∗
a,r (K ) : |δ| ≪ ϵ|r |} ≫ |r |d2−j

(λ1···λd2−j )(NΛ∗
a,r (K))

≍ (λd2 ···λj+1)(Λa,r (K))

(N/T )d2−j
for all 0 ≤ j ≤ d2, by Schmidt and Mahler.

But (λ1 · · ·λd2)(Λa,r (K )) ≍ K (N/T )d
2−d (volume calculation),

so (λ1 · · ·λj)(Λa,r (K )) ≫ K(N/T )d
2−d

K1/2(N/T )d2−j
= K 1/2(N/T )j−d .
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Schmidt forwards

Since (λ1 · · ·λj)(Λa,r (K )) ≫ K 1/2(N/T )j−d , Schmidt gives

#{c ∈ Λa,r (K ) : |c | ≤ N/T} ≪
∑

0≤j≤d2

(N/T )j

K 1/2(N/T )j−d
≪ (N/T )d

K 1/2
.

Since Sa,r (c) is controlled by lattice conditions c ∈ Λa,r (K ), we
have something like

ΣT (ar
−1) :=

∑
x∈Md (Z)

w(x/T )e(tr(ar−1x2))

≪
∑

|c|≤N/T

T d2|Sa,r (c)|

≪
∑
K |N

T d2

(N/K )1/2Nd−1

(N/T )d

K 1/2
≪ T d2−dN1/2.

This is ≪ T d2− d
2 , since N = det(r) ≍ |r |d ≍ T d .
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We have proved the following. Let d ∈ {2, 3}, r ∈ Md(Z), and
T ≍ |r | > 0, with |det(r)| prime and |det(r)| ≍ |r |d .

Theorem (Arala–W. 2025+)

Let w ∈ C∞
c (Md(R)). If a ∈ Md(Z) \Md(Z)r , then

ΣT (ar
−1) :=

∑
x∈Md (Z)

w(x/T )e(tr(ar−1x2)) ≪ϵ T
d2− d

2
+ϵ.

Averaging over a ∈ Md(Z)/Md(Z)r (“polygon method”) gives:

Theorem (Arala–W. 2025+)

Let w ∈ C∞
c (Md(R)n). If b ∈ Md(Z), then∑

x∈Md (Z)n

x2
1 +···+x2

n−b∈rMd (Z)

w(x/T ) =
cwT

d2n

|det(r)|d
+ Ow ,ϵ(T

(d2− d
2

)n+ϵ).
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Some questions

▶ What about using Weyl differencing instead of Poisson
summation? (It looks messy, but maybe. . . ?)

▶ How does this all relate to the incomplete Eisenstein series
perspective of [Nelson, Leung–Young] that we saw
yesterday?
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