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A result of Shimura

@ Let f and g be holomorphic modular forms with Fourier expansions
f _ Z an€2mnz’g _ Z bneZRMZ
n=0 n=0
@ Define the product L-function

D(s, f,g) = Zannns

Theorem (Shimura)

Let f be a Hecke eigenform of weight k and g a holomorphic modular form
of weight n < k. Then, when s is an integer with %(n +k—2)<s <k,

ﬂ_ka(s’f’g)
<f,f>
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A result of Shimura

@ Proof of theorem: Integral representation, control of Fourier
coefficients, Maass-Shimura operators
@ Integral representation (Rankin, Selberg):

< f(2):8(2) - Em(z,8) >~ D(s + k= 1)

where E

1 _ y
En(z,s) = = (cz+d) ™" ———
" gcdé)_l lcz + d|?s

andm =k — n.
@ When s =0, E,;(z,0) is a holomorphic Eisenstein series of weight m.
So
< f,8 En(z,0) >~ D(k — 1),

which implies
k< fif>""Dk—1,f,8) eQ(f)Q(g)

after keeping track of extra factors.
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A result of Shimura

@ To get algebraicity results for critical values to the left of k — 1, use
Maass-Shimura differential operators

Gy = (D 50 s O 084000
m = i 2iy aZ sOm = Om+2r—2 m+2 m
@ Then
Ein(z.—r) ~ 60 Ei-n-2:(2.0)
and
<f.g: 61(crf)n72rEkfn72r(Z, 0) >~< f,g-Ex—n(z,—7) >~ D(k—1—7)

@ Conclusion: algebraicity of 7% < f, f >~ D(k — 1 —r)

@ Remark: algebraicity for (holomorphic projection of) g - 6,Sf)Em(z, 0)
can be derived from analysis of branching problem for holomoprhic
discrete series of S L,(R) embedded diagonally in S L,(R) x S L(R)
(Harris)
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Quaternionic Modular Forms

@ Let G,/Q be the automorphism group of the split octonions

@ G,(R) has maximal compact K = (SU(2)""8 x SU(2)™") /uy

@ G;(R) has non-holomorphic discrete series representations r,, with
K-types

7tu = €D Sym™ 7 (V)"%) m Sym” (Sym? (V3""))

r=0

Definition (Gan-Gross-Savin, A. Pollack)

A quaternionic modular form on G, of weight n and level 1 is a function
@ : G1(Z)\G2(R) — Sym> (V") = 1 satisfying:

Q@ O(yg) = O(g) forall y € G2(Z) and g € G2(R)

Q O(gk) = k~'®(g) forall k € Kz and g € G»(R)

© D,® = 0 for a certain differential operator D,

©Q @ is nice (“smooth", “moderate growth")
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Quaternionic Modular Forms

Theorem (A. Pollack)
Forallxe W andme M,

Oy (n(x)m) = Dy(m) +

ag(w)e VW, (m)
we2xW(Q),w=0

for some completely explicit functions W,,.

@ G; has a Heisenberg parabolic P = MN
@ M =GL, and W := N/[N, N| < {binary cubic forms}
@ Example of a QMF: The degenerate Heisenberg Eisenstein series

E( fuss) = 3, falvg.s), where fu(g.s) € Ind( ) (|v")@Sym® (V")
veP\G

is a QMF of weight » when n is even and s = n + 1. Write
En(g) := E(8. fu: $)-
Bryan Hu
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Adjoint L-Function

@ From now on let G = G,. There is a subgroup H < G isomorphic to
SU(2,1). One can define QMFs for H, and they also have a good
theory of Fourier expansion (Koseki-Oda, Hilado-McGlade-Yan).

@ Let II be a generic cuspidal automorphic representation for H, with
[, quaternionic of weight n. Then, for ¢ € I1,

< @(h),E(h, fu,s) >g~ L(s — 1,11, Ad)

at least at unramified finite places (J. Hundley) and the archimedean
place.

@ We want to talk about algebraicity of our L-function at critical points
(in the sense of Deligne), i.e. L(s) fors =n,n—2,n—4,...,2
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Algebraicity Results

@ Ingredients of integral representation:
< @(h),E(h, fu,s) >g~ L(s — 1,11, Ad)

are a cuspidal QMF on H = SU(2, 1), degenerate Heisenberg
Eisenstein series on G = G».

@ Assumption: There is a basis for the space of cuspidal QMFs on H all
of whose Fourier coefficients are algeraic numbers.

@ Assumption: E,(g) = E(g, f», s = n + 1) can be normalized to have
algebraic Fourier Coefficients (n = 4 W.T. Gan, n > 4 ongoing joint
work with J. Johnson-Leung, F. McGlade, A. Pollack, M. Roy)

@ Then taking s = n + 1 shows

L(n,11,Ad)
<@, p>
Remark: There is a basis for the space of cuspidal QMFs on the

exceptional groups G», F4, Eg, E7, Eg, all of whose Fourier Coefficients are

algebraic numbers (A. Pollack)
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Algebraicity Results

Theorem (in progress)

Letr = 0. There exist completely explicit differential operators D, such
that, if ® is a QMF on G of weight n, then D,®|y is a QMF on H of weight
n+r.

Furthermore, the Fourier coefficients of D, ®|y are @-Iinear combinations
of the Fourier coefficients of ®.
Proof:

@ Analysis of branching laws for quaternionic discrete series
representations (H.Y. Loke) to find operators.
@ Relate D, W, to Whittaker functions for H.

Corollary
For m an even integer with 4 < m < n,
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Thank you!
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