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A result of Shimura

Let f and g be holomorphic modular forms with Fourier expansions

f “

8
ÿ

n“0

ane2πinz, g “

8
ÿ

n“0

bne2πinz

Define the product L-function

Dps, f , gq “

8
ÿ

n“0

anbnn´s

Theorem (Shimura)
Let f be a Hecke eigenform of weight k and g a holomorphic modular form
of weight n ă k. Then, when s is an integer with 1

2 pn ` k ´ 2q ă s ă k,

π´k Dps, f , gq

ă f , f ą
P Qp f qQpgq
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A result of Shimura

Proof of theorem: Integral representation, control of Fourier
coefficients, Maass-Shimura operators
Integral representation (Rankin, Selberg):

ă f pzq, gpzq ¨ Empz, sq ą« Dps ` k ´ 1q

where
Empz, sq “

1
2

ÿ

gcdpc,dq“1

pcz ` dq´m ys

|cz ` d|2s

and m “ k ´ n.
When s “ 0, Empz, 0q is a holomorphic Eisenstein series of weight m.
So

ă f , g ¨ Empz, 0q ą« Dpk ´ 1q,

which implies

π´k ă f , f ą´1 Dpk ´ 1, f , gq P Qp f qQpgq

after keeping track of extra factors.
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A result of Shimura

To get algebraicity results for critical values to the left of k ´ 1, use
Maass-Shimura differential operators

δm “
1

2πi

ˆ

m
2iy

`
B

Bz

˙

, δ
prq
m “ δm`2r´2 ˝ ¨ ¨ ¨ ˝ δm`2 ˝ δm

Then
Ek´npz,´rq « δ

prq

k´n´2rEk´n´2rpz, 0q

and

ă f , g ¨ δ
prq

k´n´2rEk´n´2rpz, 0q ą«ă f , g ¨ Ek´npz,´rq ą« Dpk ´ 1 ´ rq

Conclusion: algebraicity of π´k ă f , f ą´1 Dpk ´ 1 ´ rq

Remark: algebraicity for (holomorphic projection of) g ¨ δ
prq
m Empz, 0q

can be derived from analysis of branching problem for holomoprhic
discrete series of S L2pRq embedded diagonally in S L2pRq ˆ S L2pRq

(Harris)
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Quaternionic Modular Forms

Let G2{Q be the automorphism group of the split octonions
G2pRq has maximal compact KR � pS Up2qlong ˆ S Up2qshortq{µ2

G2pRq has non-holomorphic discrete series representations πn with
K-types

πn “
à

rě0
Sym2n`rpV long

2 q ⊠ SymrpSym3pV short
2 qq

Definition (Gan-Gross-Savin, A. Pollack)
A quaternionic modular form on G2 of weight n and level 1 is a function
Φ : G2pZqzG2pRq Ñ Sym2npV long

2 q ⊠ 1 satisfying:
1 Φpγgq “ Φpgq for all γ P G2pZq and g P G2pRq

2 Φpgkq “ k´1Φpgq for all k P KR and g P G2pRq

3 DnΦ “ 0 for a certain differential operator Dn

4 Φ is nice (“smooth", “moderate growth")
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Quaternionic Modular Forms

Theorem (A. Pollack)
For all x P W and m P M,

ΦrN,Nspnpxqmq “ ΦNpmq `
ÿ

ωP2πWpQq,ωě0

aΦpωqe´ixω,xyWωpmq

for some completely explicit functionsWω.

G2 has a Heisenberg parabolic P “ MN
M � GL2 and W :“ N{rN,Ns Ø tbinary cubic formsu

Example of a QMF: The degenerate Heisenberg Eisenstein series

Epg, fn, sq “
ÿ

γPPzG

fnpγg, sq, where fnpg, sq P IndGpAq

PpAq
p|ν|sqbSym2npV long

2 q

is a QMF of weight n when n is even and s “ n ` 1. Write
Enpgq :“ Epg, fn, sq.
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Adjoint L-Function

From now on let G “ G2. There is a subgroup H Ď G isomorphic to
S Up2, 1q. One can define QMFs for H, and they also have a good
theory of Fourier expansion (Koseki-Oda, Hilado-McGlade-Yan).

Let Π be a generic cuspidal automorphic representation for H, with
Π8 quaternionic of weight n. Then, for φ P Π,

ă φphq, Eph, fn, sq ąH« Lps ´ 1,Π, Adq

at least at unramified finite places (J. Hundley) and the archimedean
place.

We want to talk about algebraicity of our L-function at critical points
(in the sense of Deligne), i.e. Lpsq for s “ n, n ´ 2, n ´ 4, . . . , 2
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Algebraicity Results

Ingredients of integral representation:

ă φphq, Eph, fn, sq ąH« Lps ´ 1,Π, Adq

are a cuspidal QMF on H “ S Up2, 1q, degenerate Heisenberg
Eisenstein series on G “ G2.
Assumption: There is a basis for the space of cuspidal QMFs on H all
of whose Fourier coefficients are algeraic numbers.
Assumption: Enpgq “ Epg, fn, s “ n ` 1q can be normalized to have
algebraic Fourier Coefficients (n “ 4 W.T. Gan, n ą 4 ongoing joint
work with J. Johnson-Leung, F. McGlade, A. Pollack, M. Roy)
Then taking s “ n ` 1 shows

Lpn,Π, Adq

ă φ, φ ą
P πZ ˆ Q

Remark: There is a basis for the space of cuspidal QMFs on the
exceptional groups G2, F4, E6, E7, E8, all of whose Fourier Coefficients are
algebraic numbers (A. Pollack)
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Algebraicity Results

Theorem (in progress)
Let r ě 0. There exist completely explicit differential operators Dr such
that, if Φ is a QMF on G of weight n, then DrΦ|H is a QMF on H of weight
n ` r.
Furthermore, the Fourier coefficients of DrΦ|H are Q-linear combinations
of the Fourier coefficients of Φ.

Proof:
Analysis of branching laws for quaternionic discrete series
representations (H.Y. Loke) to find operators.
Relate DrWω to Whittaker functions for H.

Corollary
For m an even integer with 4 ď m ď n,

Lpm,Π,Adq

ă φ, φ ą
P πZ ˆ Q
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Thank you!

Bryan Hu August 11, 2025 10 / 10


	Background
	Exceptional group stuff

