Algebraicity Results for Special Values of L-functions on Exceptional Groups

Bryan Hu

August 11, 2025

Bryan Hu August 11, 2025

A result of Shimura

Let f and g be holomorphic modular forms with Fourier expansions

$$f = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}, g = \sum_{n=0}^{\infty} b_n e^{2\pi i n z}$$

• Define the product *L*-function

$$D(s, f, g) = \sum_{n=0}^{\infty} a_n \overline{b_n} n^{-s}$$

Theorem (Shimura)

Let f be a Hecke eigenform of weight k and g a holomorphic modular form of weight n < k. Then, when s is an integer with $\frac{1}{2}(n+k-2) < s < k$,

$$\pi^{-k} \frac{D(s, f, g)}{\langle f, f \rangle} \in \mathbb{Q}(f)\mathbb{Q}(g)$$

Bryan Hu August 11, 2025

A result of Shimura

- Proof of theorem: Integral representation, control of Fourier coefficients, Maass-Shimura operators
- Integral representation (Rankin, Selberg):

$$\langle f(z), g(z) \cdot E_m(z, s) \rangle \approx D(s + k - 1)$$

where

$$E_m(z,s) = \frac{1}{2} \sum_{\gcd(c,d)=1} (cz+d)^{-m} \frac{y^s}{|cz+d|^{2s}}$$

and m = k - n.

• When s = 0, $E_m(z, 0)$ is a holomorphic Eisenstein series of weight m. So

$$\langle f, g \cdot E_m(z,0) \rangle \approx D(k-1),$$

which implies

$$\pi^{-k} < f, f >^{-1} D(k-1, f, g) \in \mathbb{Q}(f)\mathbb{Q}(g)$$

3/10

after keeping track of extra factors.

Bryan Hu August 11, 2025

A result of Shimura

ullet To get algebraicity results for critical values to the left of k-1, use Maass-Shimura differential operators

$$\delta_m = \frac{1}{2\pi i} \left(\frac{m}{2iy} + \frac{\partial}{\partial z} \right), \delta_m^{(r)} = \delta_{m+2r-2} \circ \cdots \circ \delta_{m+2} \circ \delta_m$$

Then

$$E_{k-n}(z, -r) \approx \delta_{k-n-2r}^{(r)} E_{k-n-2r}(z, 0)$$

and

$$< f, g \cdot \delta_{k-n-2r}^{(r)} E_{k-n-2r}(z,0) > \approx < f, g \cdot E_{k-n}(z,-r) > \approx D(k-1-r)$$

- Conclusion: algebraicity of $\pi^{-k} < f, f >^{-1} D(k-1-r)$
- Remark: algebraicity for (holomorphic projection of) $g \cdot \delta_m^{(r)} E_m(z,0)$ can be derived from analysis of branching problem for holomoprhic discrete series of $SL_2(\mathbb{R})$ embedded diagonally in $SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$ (Harris)

Bryan Hu August 11, 2025

Quaternionic Modular Forms

- Let G_2/\mathbb{Q} be the automorphism group of the split octonions
- $G_2(\mathbb{R})$ has maximal compact $K_{\mathbb{R}} \cong (SU(2)^{long} \times SU(2)^{short})/\mu_2$
- ullet $G_2(\mathbb{R})$ has non-holomorphic discrete series representations π_n with K-types

$$\pi_n = \bigoplus_{r \geqslant 0} \operatorname{Sym}^{2n+r}(V_2^{long}) \boxtimes \operatorname{Sym}^r(\operatorname{Sym}^3(V_2^{short}))$$

Definition (Gan-Gross-Savin, A. Pollack)

A quaternionic modular form on G_2 of weight n and level 1 is a function $\Phi: G_2(\mathbb{Z})\backslash G_2(\mathbb{R}) \to \operatorname{Sym}^{2n}(V_2^{long}) \boxtimes \mathbf{1}$ satisfying:

- $lack \Phi(\gamma g) = \Phi(g) ext{ for all } \gamma \in G_2(\mathbb{Z}) ext{ and } g \in G_2(\mathbb{R})$
- $\Phi(gk) = k^{-1}\Phi(g)$ for all $k \in K_{\mathbb{R}}$ and $g \in G_2(\mathbb{R})$
- **3** $D_n\Phi=0$ for a certain differential operator D_n
- 4 Φ is nice ("smooth", "moderate growth")

Bryan Hu August 11, 2025

Quaternionic Modular Forms

Theorem (A. Pollack)

For all $x \in W$ and $m \in M$,

$$\Phi_{[N,N]}(n(x)m) = \Phi_N(m) + \sum_{\omega \in 2\pi W(\mathbb{Q}), \omega \geqslant 0} a_{\Phi}(\omega) e^{-i\langle \omega, x \rangle} \mathcal{W}_{\omega}(m)$$

for some completely explicit functions W_{ω} .

- G_2 has a Heisenberg parabolic P = MN
- $M \cong GL_2$ and $W := N/[N, N] \leftrightarrow \{\text{binary cubic forms}\}\$
- Example of a QMF: The degenerate Heisenberg Eisenstein series

$$E(g,f_n,s) = \sum_{\gamma \in P \setminus G} f_n(\gamma g,s), \text{ where } f_n(g,s) \in \operatorname{Ind}_{P(\mathbb{A})}^{G(\mathbb{A})}(|\nu|^s) \otimes \operatorname{Sym}^{2n}(V_2^{long})$$

6/10

is a QMF of weight n when n is even and s = n + 1. Write $E_n(g) := E(g, f_n, s)$.

Bryan Hu August 11, 2025

Adjoint L-Function

- From now on let $G = G_2$. There is a subgroup $H \subseteq G$ isomorphic to SU(2,1). One can define QMFs for H, and they also have a good theory of Fourier expansion (Koseki-Oda, Hilado-McGlade-Yan).
- Let Π be a generic cuspidal automorphic representation for H, with Π_{∞} quaternionic of weight n. Then, for $\varphi \in \Pi$,

$$<\varphi(h), E(h, f_n, s)>_{H} \approx L(s-1, \Pi, Ad)$$

at least at unramified finite places (J. Hundley) and the archimedean place.

• We want to talk about algebraicity of our *L*-function at critical points (in the sense of Deligne), i.e. L(s) for s = n, n - 2, n - 4, ..., 2

Bryan Hu August 11, 2025 7/10

Algebraicity Results

Ingredients of integral representation:

$$<\varphi(h), E(h, f_n, s)>_{H} \approx L(s-1, \Pi, Ad)$$

are a cuspidal QMF on H = SU(2,1), degenerate Heisenberg Eisenstein series on $G = G_2$.

- Assumption: There is a basis for the space of cuspidal QMFs on H all of whose Fourier coefficients are algeraic numbers.
- Assumption: $E_n(g) = E(g, f_n, s = n + 1)$ can be normalized to have algebraic Fourier Coefficients (n = 4 W.T. Gan, n > 4 ongoing joint work with J. Johnson-Leung, F. McGlade, A. Pollack, M. Roy)
- Then taking s = n + 1 shows

$$\frac{L(n,\Pi,Ad)}{<\varphi,\varphi>}\in\pi^{\mathbb{Z}}\times\overline{\mathbb{Q}}$$

Remark: There is a basis for the space of cuspidal QMFs on the exceptional groups G_2 , F_4 , E_6 , E_7 , E_8 , all of whose Fourier Coefficients are algebraic numbers (A. Pollack)

Bryan Hu August 11, 2025

Algebraicity Results

Theorem (in progress)

Let $r \geqslant 0$. There exist completely explicit differential operators D_r such that, if Φ is a QMF on G of weight n, then $D_r\Phi|_H$ is a QMF on H of weight n+r.

Furthermore, the Fourier coefficients of $D_r\Phi|_H$ are $\overline{\mathbb{Q}}$ -linear combinations of the Fourier coefficients of Φ .

Proof:

- Analysis of branching laws for quaternionic discrete series representations (H.Y. Loke) to find operators.
- Relate $D_r W_{\omega}$ to Whittaker functions for H.

Corollary

For m an even integer with $4 \le m \le n$,

$$\frac{L(m,\Pi,\mathrm{Ad})}{<\varphi,\varphi>}\in\pi^{\mathbb{Z}}\times\overline{\mathbb{Q}}$$

Bryan Hu August 11, 2025

Thank you!

Bryan Hu August 11, 2025