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SL(2,Ok) and Hn

k totally real number field.
k has narrow class number 1.
n = [k : Q], D discriminant of k , R regulator of k ,
d volume of Ok .
σ Q-morphism ⇒ σ : k ↪→ R thus
σ : SL(2,Ok) ↪→ SL(2,R).

Consider H = {z ∈ C | ℑ(z) > 0}. Then SL(2,R) acts on H:(
a b
c d

)
z =

az + b

cz + d

Thus SL(2,R)n acts on Hn. There are n Q-morphisms:

SL(2,Ok) ↪→ SL(2,R)n ⟳ Hn
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SL(2,Ok)\Hn as a Riemannian manifold

We may endow SL(2,Ok)\Hn with the hyperbolic metric:

g =
n∑

j=1

dx2
j + dy2

j

y2
j

The geometry defined by g gives us the following concepts:

A Laplace-Beltrami operator ∆ =
n∑

j=1
∆j where

∆j = y2
j

(
∂2

∂x2
j
+ ∂2

∂y2
j

)
.

A hyperbolic measure µ = λ2n
n∏

j=1
y2
j

where λ2n is the Lebesgue

measure on R2n.
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Hilbert modular forms

A function f defined on Hn is a Hilbert modular form if:

1 f is of moderate growth.
2 ∀j ∈ J1, nK , ∃a ∈ C,∆j f = af .
3 f is SL(2,Ok)-invariant.

The simplest Hilbert modular forms we can construct are
Eisenstein series, for z ∈ Hn, ℜ(s) > 1 and m ∈ Zn−1:

E (z , s,m) =
∑

[γ] ∈ Stab(∞)\SL(2,Ok)

n∏
j=1

ℑ(γjzj)s+iρj (m)

ρj(m) is such that
n∏

j=1
y
s+iρj (m)
j is Stab(∞) invariant.
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Quantum unique ergodicity

X Riemannian manifold.
fn normalized eigenfunctions of ∆ for the eigenvalues αn.
∀n ∈ N, αn ≤ αn+1

For A ⊂ X , we would like to prove:

1
µ(A)

∫
A

|fn(x)|2 dµ(x) −→
n→+∞

1
µ(X )

Γ < SL(2,R), Γ \ H compact: Lindenstrauss (2006)
Γ < SL(2,R), Γ \ H: Soundararajan (2010)
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Our question

Let us denote Et,m = E
(
·, 1

2 + it,m
)
, µt,m = |Et,m|2 µ. For

shrinking sets A(t) and B(t), we wish to prove that:

µt,m(A(t))

µt,m(B(t))
∼

t→∞

µ(A(t))

µ(B(t))

Truelsen (2007): Fixed sets.
Young (2013): k = Q

In what follows we will adapt Young’s approach to our setting.
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Involving functions of compact support

Let A(t) be a family of shrinking sets whose radii goes to 0, ft
smooth such that ft ≈ 1A(t).

µt,m(A(t)) =

∫
SL(2,Ok )\Hn

1A(t)(z) |Et,m(z)|2 dµ(z)

≈
∫

SL(2,Ok )\Hn

ft(z) |Et,m(z)|2 dµ(z)

=
〈
|Et,m|2 , ft

〉
Thus our goal is to estimate

〈
|Et,m|2 , ft

〉
.
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Spectral decomposition of L2 (SL(2,Ok)\Hn)

By studying the operator ∆ we obtain the following Parseval
formula, for f , g ∈ L2 (SL(2,Ok)\Hn) we have:

⟨f , g⟩ = 1
µ (SL(2,Ok)\Hn)

⟨f , 1⟩ ⟨1, g⟩+
∑
u∈S

⟨f , u⟩ ⟨u, g⟩

+
1

2n+1πdR

∑
k∈Zn−1

∫
R

⟨f ,El ,k⟩ ⟨El ,k , g⟩ dλ(l)

We would like to apply this to |Et,m|2 and ft but |Et,m|2 is not
in L2 (SL(2,Ok)\Hn)...
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Zagier’s renormalization theory

We adapted Zagier’s results (1981).
∀η ̸= 0, ∃ξη explicit linear combination of Eisenstein series,
such that Et+η,mE−t,−m − ξη ∈ L2 (SL(2,Ok)\Hn).

Applying Parseval’s formula to Et+η,mE−t,−m − ξη and ft :〈
|Et,m|2 , ft

〉
= lim

η→0
⟨ξη, ft⟩+

∑
u∈S

〈
|Et,m|2 , u

〉
⟨u, ft⟩

+
1

2n+1πdR

∑
k∈Zn−1

∫
R

lim
η→0

⟨Et+η,mE−t,−m − ξη,El ,k⟩ ⟨El ,k , ft⟩ dλ(l)
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Estimating the discrete and continuous terms

1

〈
|Et,m|2 , u

〉
= product of L-functions related to u and

Gamma functions. We are able to estimate for any N:∑
u∈S

〈
|Et,m|2 , u

〉
⟨u, ft⟩ ≪ ∥ft∥2 a(t)

n
2 log(t)

4
3 (log log(t))

2
3 t−δ

+ ∥ft∥1 t
−N

2 ⟨Et+η,mE−t,−m − ξη,El ,k⟩ = product of L-functions and
Gamma functions. We should have (ongoing work):∑

k∈Zn−1

∫
R

lim
η→0

⟨Et+η,mE−t,−m − ξη,El ,k⟩ ⟨El ,k , ft⟩ dλ(l)

≪ ∥ft∥2 t
− n

6+ε
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Bounding the main term

By using the explicit expression of ξη and the residue of
E (z , ·, 0) at 1 we are able to estimate:

lim
η→0

⟨ξη, ft⟩ =
nπn2n−2R

Dζk(2)
log

(
1
4
+ t2

) ∫
SL(2,Ok )\Hn

ft(z)dµ(z)

+O(∥ft∥1 log(t)
2
3 log(log(t))

1
3 ) +O(t−N)

Here ζk is the Dedekind zeta function of k .
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Conclusion

Combining the previous estimates we obtain:〈
|Et,m|2 , ft

〉
=
nπn2n−2R

Dζk(2)
log

(
1
4
+ t2

) ∫
SL(2,Ok )\Hn

ft(z)dµ(z)

+O(∥ft∥2 a(t)
n
2 log(t)

4
3 (log log(t))

2
3 t−δ)

+O(∥ft∥1 log(t)
2
3 log(log(t))

1
3 ) +O(t−N)

The first term is the dominating term ⇒ QUE.
We need to choose appropriate functions ft .

Thank you for your attention!
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