Quantum
unique
ergodicity for
Hilbert
modular
forms on
shrinking
sets

Ivan Doubovik

Hilbert modular forms

Quantum unique ergodicty

Quantum unique ergodicity for Hilbert modular forms on shrinking sets

Ivan Doubovik

University of Lille

2025

$SL(2, \mathcal{O}_k)$ and \mathcal{H}^n

Quantum
unique
ergodicity for
Hilbert
modular
forms on
shrinking
sets

Ivan Doubovik

Hilbert modular forms

Quantum unique ergodicty

- k totally real number field.
- k has narrow class number 1.
- $n = [k : \mathbb{Q}]$, D discriminant of k, R regulator of k, d volume of \mathcal{O}_k .
- σ Q-morphism $\Rightarrow \sigma : k \hookrightarrow \mathbb{R}$ thus $\sigma : SL(2, \mathcal{O}_k) \hookrightarrow SL(2, \mathbb{R})$.

Consider $\mathcal{H} = \{z \in \mathbb{C} \mid \Im(z) > 0\}$. Then $SL(2,\mathbb{R})$ acts on \mathcal{H} :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}$$

Thus $SL(2,\mathbb{R})^n$ acts on \mathcal{H}^n . There are n \mathbb{Q} -morphisms:

$$SL(2, \mathcal{O}_k) \hookrightarrow SL(2, \mathbb{R})^n \circlearrowleft \mathcal{H}^n$$

$SL(2, \mathcal{O}_k) \backslash \mathcal{H}^n$ as a Riemannian manifold

Quantum
unique
ergodicity for
Hilbert
modular
forms on
shrinking
sets

Ivan Doubovik

Hilbert modular forms

Quantum unique ergodicty We may endow $SL(2, \mathcal{O}_k) \setminus \mathcal{H}^n$ with the hyperbolic metric:

$$g = \sum_{j=1}^{n} \frac{dx_{j}^{2} + dy_{j}^{2}}{y_{j}^{2}}$$

The geometry defined by g gives us the following concepts:

• A Laplace-Beltrami operator $\Delta = \sum\limits_{j=1}^n \Delta_j$ where

$$\Delta_j = y_j^2 \left(\frac{\partial^2}{\partial x_j^2} + \frac{\partial^2}{\partial y_j^2} \right).$$

• A hyperbolic measure $\mu=\frac{\lambda_{2n}}{\prod\limits_{j=1}^{n}y_{j}^{2}}$ where λ_{2n} is the Lebesgue measure on \mathbb{R}^{2n} .

Hilbert modular forms

Quantum
unique
ergodicity for
Hilbert
modular
forms on
shrinking
sets

Ivan Doubovik

Hilbert modular forms

Quantum unique ergodicty A function f defined on \mathcal{H}^n is a Hilbert modular form if:

- \bullet f is of moderate growth.
- $\mathbf{0} \quad \forall j \in \llbracket 1, n \rrbracket, \exists a \in \mathbb{C}, \Delta_j f = af.$
- **3** f is $SL(2, \mathcal{O}_k)$ -invariant.

The simplest Hilbert modular forms we can construct are Eisenstein series, for $z \in \mathcal{H}^n$, $\Re(s) > 1$ and $m \in \mathbb{Z}^{n-1}$:

$$E(z,s,m) = \sum_{\substack{\{\gamma\} \in Stab(\infty) \setminus SL(2,\mathcal{O}_k) \\ j=1}} \prod_{j=1}^n \Im(\gamma_j z_j)^{s+i\rho_j(m)}$$

 $\rho_j(m)$ is such that $\prod_{i=1}^n y_j^{s+i\rho_j(m)}$ is $Stab(\infty)$ invariant.

Quantum unique ergodicity

Quantum
unique
ergodicity for
Hilbert
modular
forms on
shrinking
sets

Ivan Doubovik

Hilbert modular forms

Quantum unique ergodicty

- X Riemannian manifold.
- f_n normalized eigenfunctions of Δ for the eigenvalues α_n .
- $\forall n \in \mathbb{N}, \alpha_n \leq \alpha_{n+1}$

For $A \subset X$, we would like to prove:

$$\frac{1}{\mu(A)} \int_{A} |f_n(x)|^2 d\mu(x) \xrightarrow[n \to +\infty]{} \frac{1}{\mu(X)}$$

- $\Gamma < SL(2,\mathbb{R}), \ \Gamma \setminus \mathcal{H}$ compact: Lindenstrauss (2006)
- $\Gamma < SL(2,\mathbb{R})$, $\Gamma \setminus \mathcal{H}$: Soundararajan (2010)

Our question

Quantum
unique
ergodicity for
Hilbert
modular
forms on
shrinking
sets

Ivan Doubovik

Hilbert modular

Quantum unique ergodicty Let us denote $E_{t,m} = E\left(\cdot, \frac{1}{2} + it, m\right)$, $\mu_{t,m} = |E_{t,m}|^2 \mu$. For shrinking sets A(t) and B(t), we wish to prove that:

$$\frac{\mu_{t,m}(A(t))}{\mu_{t,m}(B(t))} \underset{t \to \infty}{\sim} \frac{\mu(A(t))}{\mu(B(t))}$$

- Truelsen (2007): Fixed sets.
- Young (2013): $k = \mathbb{Q}$

In what follows we will adapt Young's approach to our setting.

Involving functions of compact support

Quantum
unique
ergodicity for
Hilbert
modular
forms on
shrinking
sets

Ivan Doubovik

Hilbert modular forms

Quantum unique ergodicty Let A(t) be a family of shrinking sets whose radii goes to 0, f_t smooth such that $f_t \approx 1_{A(t)}$.

$$\mu_{t,m}(A(t)) = \int_{SL(2,\mathcal{O}_k)\backslash\mathcal{H}^n} 1_{A(t)}(z) |E_{t,m}(z)|^2 d\mu(z)$$

$$\approx \int_{SL(2,\mathcal{O}_k)\backslash\mathcal{H}^n} f_t(z) |E_{t,m}(z)|^2 d\mu(z)$$

$$= \left\langle |E_{t,m}|^2, f_t \right\rangle$$

Thus our goal is to estimate $\langle |E_{t,m}|^2, f_t \rangle$.

Spectral decomposition of $\mathcal{L}^2(SL(2,\mathcal{O}_k)\backslash\mathcal{H}^n)$

Quantum
unique
ergodicity for
Hilbert
modular
forms on
shrinking
sets

Ivan Doubovik

Hilbert modular forms

Quantum unique ergodicty By studying the operator Δ we obtain the following Parseval formula, for $f,g \in \mathcal{L}^2(SL(2,\mathcal{O}_k)\backslash\mathcal{H}^n)$ we have:

$$\begin{split} \left\langle f,g\right\rangle =&\frac{1}{\mu\left(SL(2,\mathcal{O}_{k})\backslash\mathcal{H}^{n}\right)}\left\langle f,1\right\rangle \left\langle 1,g\right\rangle +\sum_{u\in S}\left\langle f,u\right\rangle \left\langle u,g\right\rangle \\ &+\frac{1}{2^{n+1}\pi dR}\sum_{k\in\mathbb{Z}^{n-1}}\int_{\mathbb{R}}\left\langle f,E_{l,k}\right\rangle \left\langle E_{l,k},g\right\rangle d\lambda(l) \end{split}$$

We would like to apply this to $|E_{t,m}|^2$ and f_t but $|E_{t,m}|^2$ is not in $\mathcal{L}^2(SL(2,\mathcal{O}_k)\backslash\mathcal{H}^n)...$

Zagier's renormalization theory

Quantum
unique
ergodicity for
Hilbert
modular
forms on
shrinking
sets

Ivan Doubovik

Hilbert modular forms

Quantum unique ergodicty • We adapted Zagier's results (1981).

• $\forall \eta \neq 0, \exists \xi_{\eta}$ explicit linear combination of Eisenstein series, such that $E_{t+\eta,m}E_{-t,-m} - \xi_{\eta} \in \mathcal{L}^2\left(SL(2,\mathcal{O}_k)\backslash\mathcal{H}^n\right)$.

Applying Parseval's formula to $E_{t+\eta,m}E_{-t,-m} - \xi_{\eta}$ and f_t :

$$\begin{split} &\left\langle \left| E_{t,m} \right|^{2}, f_{t} \right\rangle \\ &= \lim_{\eta \to 0} \left\langle \xi_{\eta}, f_{t} \right\rangle + \sum_{u \in S} \left\langle \left| E_{t,m} \right|^{2}, u \right\rangle \left\langle u, f_{t} \right\rangle \\ &+ \frac{1}{2^{n+1} \pi dR} \sum_{k \in \mathbb{Z}^{n-1}} \int_{\mathbb{R}} \lim_{\eta \to 0} \left\langle E_{t+\eta, m} E_{-t, -m} - \xi_{\eta}, E_{l,k} \right\rangle \left\langle E_{l,k}, f_{t} \right\rangle d\lambda(l) \end{split}$$

Estimating the discrete and continuous terms

Quantum
unique
ergodicity for
Hilbert
modular
forms on
shrinking
sets

Ivan Doubovik

Hilbert modular forms

Quantum unique ergodicty • $\langle |E_{t,m}|^2, u \rangle$ = product of L-functions related to u and Gamma functions. We are able to estimate for any N:

$$\sum_{u \in S} \left\langle |E_{t,m}|^2, u \right\rangle \left\langle u, f_t \right\rangle \ll \|f_t\|_2 \, a(t)^{\frac{n}{2}} \log(t)^{\frac{4}{3}} (\log \log(t))^{\frac{2}{3}} t^{-\delta}$$
$$+ \|f_t\|_1 \, t^{-N}$$

② $\langle E_{t+\eta,m}E_{-t,-m} - \xi_{\eta}, E_{l,k} \rangle$ = product of L-functions and Gamma functions. We should have (ongoing work):

$$\sum_{k \in \mathbb{Z}^{n-1}} \int_{\mathbb{R}} \lim_{\eta \to 0} \langle E_{t+\eta,m} E_{-t,-m} - \xi_{\eta}, E_{l,k} \rangle \langle E_{l,k}, f_{t} \rangle d\lambda(l)$$

$$\ll \|f_{t}\|_{2} t^{-\frac{n}{6} + \varepsilon}$$

Bounding the main term

Quantum
unique
ergodicity for
Hilbert
modular
forms on
shrinking
sets

Ivan Doubovik

Hilbert modular forms

Quantum unique ergodicty By using the explicit expression of ξ_{η} and the residue of $E\left(z,\cdot,0\right)$ at 1 we are able to estimate:

$$\begin{split} \lim_{\eta \to 0} \langle \xi_{\eta}, f_{t} \rangle &= \frac{n \pi^{n} 2^{n-2} R}{D \zeta_{k}(2)} \log \left(\frac{1}{4} + t^{2} \right) \int_{SL(2, \mathcal{O}_{k}) \setminus \mathcal{H}^{n}} f_{t}(z) d\mu(z) \\ &+ \mathcal{O}(\|f_{t}\|_{1} \log(t)^{\frac{2}{3}} \log(\log(t))^{\frac{1}{3}}) + \mathcal{O}(t^{-N}) \end{split}$$

Here ζ_k is the Dedekind zeta function of k.

Conclusion

Quantum
unique
ergodicity for
Hilbert
modular
forms on
shrinking
sets

Ivan Doubovik

Hilbert modular forms

Quantum unique ergodicty Combining the previous estimates we obtain:

$$\begin{split} \left\langle \left| E_{t,m} \right|^{2}, f_{t} \right\rangle = & \frac{n \pi^{n} 2^{n-2} R}{D \zeta_{k}(2)} \log \left(\frac{1}{4} + t^{2} \right) \int_{SL(2,\mathcal{O}_{k}) \setminus \mathcal{H}^{n}} f_{t}(z) d\mu \\ & + \mathcal{O}(\left\| f_{t} \right\|_{2} a(t)^{\frac{n}{2}} \log(t)^{\frac{4}{3}} (\log \log(t))^{\frac{2}{3}} t^{-\delta}) \\ & + \mathcal{O}(\left\| f_{t} \right\|_{1} \log(t)^{\frac{2}{3}} \log(\log(t))^{\frac{1}{3}}) + \mathcal{O}(t^{-N}) \end{split}$$

The first term is the dominating term \Rightarrow QUE. We need to choose appropriate functions f_t .

Conclusion

Quantum
unique
ergodicity for
Hilbert
modular
forms on
shrinking
sets

Ivan Doubovik

Hilbert modular forms

Quantum unique ergodicty Combining the previous estimates we obtain:

$$\begin{split} \left\langle \left| E_{t,m} \right|^{2}, f_{t} \right\rangle = & \frac{n \pi^{n} 2^{n-2} R}{D \zeta_{k}(2)} \log \left(\frac{1}{4} + t^{2} \right) \int_{SL(2,\mathcal{O}_{k}) \setminus \mathcal{H}^{n}} f_{t}(z) d\mu \\ & + \mathcal{O}(\left\| f_{t} \right\|_{2} a(t)^{\frac{n}{2}} \log(t)^{\frac{4}{3}} (\log \log(t))^{\frac{2}{3}} t^{-\delta}) \\ & + \mathcal{O}(\left\| f_{t} \right\|_{1} \log(t)^{\frac{2}{3}} \log(\log(t))^{\frac{1}{3}}) + \mathcal{O}(t^{-N}) \end{split}$$

The first term is the dominating term \Rightarrow QUE. We need to choose appropriate functions f_t .

Thank you for your attention!