n cohomology of limits of discrete series and GGP type branching laws

Jin Lee Partially supported by RTG DMS-2231514 August 11, 2025

Introduction

 $G:=\mathsf{a}$ semisimple linear $\mathbb Q$ algebraic group

 $\mathbb{A}_{\mathbb{Q}}:=\text{adeles of }\mathbb{Q}$

 $T \leq G$ anisotropic maximal torus $(T(\mathbb{R}) \text{ compact})$

$$\begin{array}{ll} \Phi &= \Phi(\mathfrak{g},\mathfrak{t}) \subset \mathfrak{t}^{\vee} & \text{roots} \\ \Phi^{+} &\subset \Phi & \text{positive roots} \\ \rho &= \frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha & \text{half sum of positive roots} \\ C & \text{positive Weyl chamber for } \Phi^{+} \\ \Phi_{K} & \text{compact roots } \mathfrak{k} = \oplus_{\alpha \in \Phi_{K}} \mathfrak{g}_{\alpha} \\ \Phi^{+}_{K} &= \Phi_{K} \cap \Phi^{+}_{K} & \text{positive compact roots} \end{array}$$

 $\pi=\otimes'_v\pi_v=$ cuspidal automorphic representation of $G(\mathbb{A}_\mathbb{Q})$ with infinitesimal character

$$\chi_{\pi_{\infty}} = \chi_{\lambda+\rho}$$

for $\lambda \in \mathfrak{t}^\vee$ an integral weight.

π or π_{∞} are called

- discrete series if $\lambda + \rho \in C$
- limits of discrete series if $\lambda + \rho \in \overline{C}$
- totally degenerate limits of discrete series (TDLDS) if $\lambda + \rho$ fixed by Weyl group (most degenerate case!)

From
$$\Phi^+$$
 get
$$\mathfrak{g}=\mathfrak{n}\oplus\mathfrak{t}\oplus\mathfrak{n}^+ \text{ with }$$

 $\mathfrak{n}=\mathsf{negative}\;\mathsf{root}\;\mathsf{space}$

$$\leadsto H^*(\mathfrak{n},\pi_\infty) = \mathfrak{n}$$
 cohomology

Then $\mathfrak{t} \curvearrowright \mathfrak{n}$ and $\mathfrak{t} \subset \mathfrak{g} \curvearrowright \pi_{\infty}$

$$\leadsto \mathfrak{t} \curvearrowright H^*(\mathfrak{n}, \pi_{\infty})$$

Denote $H^*(\mathfrak{n}, \pi_\infty)_\mu$ to be the $\mu \in \mathfrak{t}^\vee$ weight space

Why n cohomology?

When π_{∞} is a limit of discrete series,

 $\mathfrak n$ cohomology captures what $(\mathfrak g,K)$ cohomology cannot.

If π_{∞} is a limit of discrete series then

$$\pi_{\infty} = \pi(\chi_{\lambda+\rho}, \Psi^+)$$

 $(\Psi^+$ a choice of positive roots)

Proposition (L.)

If
$$\pi_{\infty} = \pi(\chi_{\lambda+\rho}, \Phi^+)$$
 is a nonzero TDLDS then

$$H^{\#\Phi_K^+}(\mathfrak{n},\pi_\infty)_{-\lambda}\neq 0$$

We then get a second nonvanishing statement by Serre duality:

Proposition (L.)

If
$$\pi_{\infty} = \pi(\chi_{\lambda+\rho}, \Phi^+)$$
 is a nonzero TDLDS then

$$H^{\#(\Phi^+-\Phi_K^+)}(\mathfrak{n},\pi_\infty^\vee)_{\lambda+2\rho}\neq 0$$

Idea of proof: $\pi(\chi_{\lambda+\rho}, \Phi^+) \neq 0$

 \implies none of the Φ^+ simple roots are compact

 \implies Vanishing differentials in complex used by Soergel

Local period integral

 $G = U_n$ quasi split unitary group

 $G' = U_{n+1}$ is also quasi split

 $G \hookrightarrow G'$

After making suitable choices, define

 $\mathfrak{n}\subset\mathfrak{n}'$ as before for G,G'

Let π, π' be TDLDS representations for G, G' respectively.

Given inner products

- (,) for π_{∞} , and
- (,)' for π'_{∞} ,

Get local period that occurs in GGP

$$\int_{G(\mathbb{R})} (g\phi',\psi')'(g\phi,\psi)dg$$

for $\phi', \psi' \in \pi'_{\infty}$ and $\phi, \psi \in \pi_{\infty}$

This induces a $G(\mathbb{R})$ intertwining map

$$\pi' \to \pi^{\vee}$$

From $\pi' \to \pi^{\vee}$ and $\mathfrak{n} \subset \mathfrak{n}'$, obtain

$$H^*(\mathfrak{n}',\pi_\infty')\to H^*(\mathfrak{n},\pi_\infty^\vee)$$

For TDLDS, the main results imply

$$H^q(\mathfrak{n}',\pi_\infty')$$
 and $H^q(\mathfrak{n},\pi_\infty^\vee)\neq 0$

at q = number of noncompact positive roots of G.

Question: is the nonvanishing of the map

$$H^q(\mathfrak{n}',\pi_\infty')\to H^q(\mathfrak{n},\pi_\infty^\vee)$$

equivalent to nonvanishing of the local period

$$\int_{G(\mathbb{R})} (g\phi',\psi')'(g\phi,\psi) dg$$

?