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Primes with restricted digits

@ Primes: 2,3,5,7,...41,...89,...601,...

@ Dirichlet's theorem for Primes in APs: infinitely many primes
containing 7

@ Study of restricted digits began at the end of the 20t" century

@ Maynard's instrumental papers gave concrete results!

Theorem (Maynard, 2015-6)
Let g > 2,000,000, ap € {0,...,g— 1} and

A={Y5oniq" :n €{0,...,q—1}\{ao}}.
Then for any constant A > 0,

> Alm)La(n) = rg(a0)(a — 1) + Oa( (Z — L) )

o (log g<)A/"

v
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History
[ 1o}

Primes with restricted digits

o Primes: 2,3,5,7,...41,...89,...601,...

@ Dirichlet's theorem for Primes in APs: infinitely many primes
containing 7

o Study of restricted digits began at the end of the 20" century

@ Maynard's instrumental papers gave concrete results!

Theorem (Maynard, 2015-6)

Let g > 2,000,000, ao € {0,...,9—1} and
A={>soniq :n€{0,...,q —1}\{ao}}.

There are infinitely many primes with no digit ag when written in
base q.
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History
[ 1o}

Primes with restricted digits

Primes: 2,3,5,7,...41,...89,...601,...

Dirichlet’s theorem for Primes in APs: infinitely many primes
containing 7

Study of restricted digits began at the end of the 20t" century

Maynard's instrumental papers gave concrete results!

Theorem (Maynard, 2015-6)

Let q =10, a €{0,...,9g—1} and

A= {Z;zo niq' :n; €1{0,...,9—1}\{a0}}.

There are infinitely many primes with no digit ag when written in
base q.
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History
oe

The Function Field Analogue

Z Fqlt]
Rational prime | Irreducible polynomial
Base b q
Digit Coefficient

@ 1924, Artin: analogue of Prime Number Theorem for APs for
Fqlt]
@ Cohen, Hayes' work in the 1960s onwards
THEOREM 5.3. If te# g, then

r

1 q

2, g4 gliis+er
(3.7) f FOE T Ta(t)| < 2¢'"q ,

where @ (H) is the number of polynomials in a reduced residue system
modulo H.

Hayes, D. " The expression of a polynomial as a sum of three
irreducibles.” Acta Arithmetica 11.4 (1966): 461-488.
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Porritt's work on polynomials with restricted digits

@ Circle method setup:
o Fo((1/t)) ={> i, xit' : x; € Fyq, j € Z }, polynomial norm
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Results
[ 1]

Porritt's work on polynomials with restricted digits

@ Circle method setup:
Fqo((1/1)) ={ Xis; xit' : x; € Fyq, j € Z }, polynomial norm
o ‘Circle’: T:={> ;oxt' : xi € Fg}, the maximal ideal of
Fq[l/t]
o Additive character eq : Fg((1/t)) — C*, Haar measure,
Sr()= > eq(mX)
mGMR

N(R, n) / Z eq(px) - Sr(x)dx

degp n
p monic irred.
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Porritt's work on polynomials with restricted digits

@ Circle method setup:
o Fo((1/t)) ={> i, xit' : x; € Fyq, j € Z }, polynomial norm
o ‘Circle’: T:={> ;oxt' : xi € Fg}, the maximal ideal of
Fq[l/t]
o Additive character eq : Fg((1/t)) — C*, Haar measure,
Sr()= Y eq(mx)
meMxp(n)

N(R, n) = /T S(x) - Se(x)dx.
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Results
[ 1]

Porritt's work on polynomials with restricted digits

@ Circle method setup:
o Fo((1/t)) ={ Xic;xit’ : xi € Fy, j € Z }, polynomial norm
o 'Circle’: T:={>_, oxit' : x; € Fq}, the maximal ideal of
Fq[l/t]
o Additive character e, : Fq((1/t)) — C*, Haar measure,
Sr()= Y eq(mx)
meMxp(n)

N(R,n) = /TS(X) - Sr(x)dx.

Lemma (from Hayes, 1966)

a,g € Fy[t] two coprime polynomials, v € T s.t. |a| < |g| < q"/?
and |y| < 1/qeg8+7/2; |E| < g"-3l3l.

S <:_ + 7) = gggﬂ(n)eq(’ytn)lhfl/q;-f- E -
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Results
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Porritt's work on polynomials with restricted digits

@ Circle method setup:

o Fo((1/t)) ={> i, xit' : x; € Fyq, j € Z }, polynomial norm
o ‘Circle’: T:={> ;oxt' : xi € Fg}, the maximal ideal of

Fq[l/t]
o Additive character eq : Fg((1/t)) — C*, Haar measure,

Sr()= Y eq(mx)

meMxp(n)
N(R, n) = / S(x) - Sa(x)dx.
T

Lemma (Porritt, 2017)

Let a, g € Fg[t] be coprime polynomials with |a| < |g],
g not a power of t and let k =degg > 0. Then

|Sr(a/g)| < (g —s)" Wilslil.
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Histor Results sent and future work
00 oe

A result of Porritt

Let R C Fy be a subset of size s and assume s < ,/q/2.
Suppose that g > 500 and n > 100(log g)2.

The number of irreducible, monic polynomials of degree n with
coefficients only from Fq\R (except possibly the leading 1) is

given by
S (o),

where
{1 if0cR

1 -
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Squarefree polynomials

@ Squarefree polynomials are not divisible by the square of any
irreducible polynomial
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@ Squarefree polynomials are not divisible by the square of any
irreducible polynomial

o Estimate #N' = #{f : P2{ f,deg P small}, then check that
#N" = #{f : AP, P? | f,deg P large} gives a small
contribution
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irreducible polynomial
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#N" = #{f : AP, P? | f,deg P large} gives a small
contribution

@ To exclude small primes, use the Brun sieve
@ For the large primes, we make use of the function field:
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Squarefree polynomials

@ Squarefree polynomials are not divisible by the square of any
irreducible polynomial

o Estimate #N' = #{f : P2{ f,deg P small}, then check that
#N" = #{f : AP, P? | f,deg P large} gives a small
contribution

@ To exclude small primes, use the Brun sieve

@ For the large primes, we make use of the function field:

e Bound by a triple sum Z Z Z 1

deT, P|d f€S,
deg P>m, f'=d
P|f

o Inner sum is easy to crudely bound
e Innermost sum depends on how the coefficients of f indexed
by multiples of p, the characteristic of F,.
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Small primes approach

The ‘small’ range will consist of primes of degree up to some mj.
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Small primes approach

The ‘small’ range will consist of primes of degree up to some mj.

#N =D (-1 Y #{meMyp:D*|m}. (1)
j=0 D|P(my)

w(D)=j
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Small primes approach

The ‘small’ range will consist of primes of degree up to some mj.

o0

#N =D (-1 Y #{meMyp:D*|m}. (1)
Jj=0 D|P(m1)
w(D)=j
1 am 1 a
S tn=Y g Te(T) - T os(2)
e & g & g
R meMz deg a<deg g deg a<deg g

Lemma (Porritt, 2017)

Let a,g € Fg[t] be coprime polynomials with |a| < |g],
g not a power of t and let k =degg > 0. Then

|Sr(a/g)| < (g —s)" WWlslil.
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Large primes approach

@ S, is the set of degree n polynomials with restricted
coefficients, and T, is the set of derivatives of elements of S,
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Large primes approach

@ S, is the set of degree n polynomials with restricted
coefficients, and T, is the set of derivatives of elements of S,

o #5,=(g—s)"
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Large primes approach

@ S, is the set of degree n polynomials with restricted
coefficients, and T, is the set of derivatives of elements of S,

° #5,=(q—>s)"
2. 2 2.1

deTn  Pld  feS,
deg P>my f'=d
N T
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Present and future work
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Large primes approach

@ S, is the set of degree n polynomials with restricted
coefficients, and T, is the set of derivatives of elements of S,

o #S5,=(g—s)"

CEDIEEED D O

P|d f,GSn
deg P>my f'=d
R T
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Large primes approach

@ S, is the set of degree n polynomials with restricted
coefficients, and T, is the set of derivatives of elements of S,

o #S5,=(g—s)"
(g—s

n_l_(ni—l] n—1

P
fes,
f'=d
P|f
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Large primes approach

—1-[n= -1
(q*s)n1 (pl]‘n Zl
1‘65,7
f‘l
P|r’
If f'=dthen f =fh+3 ., ,ait tPi, where f] = d. Since f =0
(mod P) and we are over the finite field Fq of characteristic p, we

get fo+ (Xi<p/pa 7/p t')» =0 (mod P) and hence

deg P
Z:<n/p :q/pt’ = qu /P (mOd 'D)
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H\ S esults Present and future work
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Large primes approach

If f' = d then f—f()+z,<np tPl, where fj = d. Since f =0
(mod P) and we are over the flmte field Fg of characteristic p, we

get fo + (Z,<,,/p ,q/p t')» =0 (mod P) and hence
Z Q/Ptl — foq degP /p (mod P)

l<n/p i

Lemma (B. 2025, after He-Pham-Xu, 2022)

Let f(t) =Y gcicn_q Eit' + t" a polynomial of degree n in Fqlt],
with €; independent and chosen uniformly at random from their
respective allowed set of coefficients, R¢. Then given a prime
polynomial P,

plp | f] < (T8

v

Naomi Bazlov Polynomials with Restricted Digits




Present and future work
foleYel)

The result

Theorem (B.—Gorodetsky, 2025)

Let R = (R1,..-,Rn) C g be an ordered collection of subsets of
size s. The number of squarefree, monic polynomials of degree n
with the coefficient of t"~" only from F\R; is given by

(' (2)(q —9)"(1 + o(1)).
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Present and future work
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The result

Theorem (B.—Gorodetsky, 2025)

Let R = (R1,..-,Rn) C g be an ordered collection of subsets of
size s. The number of squarefree, monic polynomials of degree n
with the coefficient of t"~" only from F\R; is given by

(' (2)(q —9)"(1 + o(1)).

Thank you for listening!
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