Polynomials with Restricted Digits

Aarhus Automorphic Forms Conference – Lightning Talks

Naomi Bazlov

Technion – Institute of Technology

11 August 2025

• Primes: 2, 3, 5, 7, ... 41, ... 89, ... 601, ...

- Primes: 2, 3, 5, 7, ... 41, ... 89, ... 601, ...
- Dirichlet's theorem for Primes in APs: infinitely many primes containing 7

History

- Primes: 2, 3, 5, 7, ... 41, ... 89, ... 601, ...
- Dirichlet's theorem for Primes in APs: infinitely many primes containing 7
- Study of restricted digits began at the end of the 20th century

- Primes: 2, 3, 5, 7, ... 41, ... 89, ... 601, ...
- Dirichlet's theorem for Primes in APs: infinitely many primes containing 7
- Study of restricted digits began at the end of the 20th century
- Maynard's instrumental papers gave concrete results!

- Primes: 2, 3, 5, 7, ... 41, ... 89, ... 601, ...
- Dirichlet's theorem for Primes in APs: infinitely many primes containing 7
- Study of restricted digits began at the end of the 20th century
- Maynard's instrumental papers gave concrete results!

Theorem (Maynard, 2015-6)

Let
$$q > 2,000,000$$
, $a_0 \in \{0,\ldots,q-1\}$ and $\mathcal{A} = \{\sum_{i \geq 0} n_i q^i : n_i \in \{0,\ldots,q-1\} \setminus \{a_0\}\}$. Then for any constant $A > 0$,

$$\sum_{n < q^k} \Lambda(n) \mathbf{1}_{\mathcal{A}}(n) = \kappa_q(\mathsf{a_0}) (q-1)^k + O_A\Big(\frac{(q-1)^k}{(\log q^k)^A}\Big).$$

- Primes: 2, 3, 5, 7, ... 41, ... 89, ... 601, ...
- Dirichlet's theorem for Primes in APs: infinitely many primes containing 7
- Study of restricted digits began at the end of the 20th century
- Maynard's instrumental papers gave concrete results!

Theorem (Maynard, 2015-6)

Let
$$q > 2,000,000$$
, $a_0 \in \{0,\ldots,q-1\}$ and $A = \{\sum_{i>0} n_i q^i : n_i \in \{0,\ldots,q-1\} \setminus \{a_0\}\}.$

There are infinitely many primes with no digit a_0 when written in base q.

- Primes: 2, 3, 5, 7, ... 41, ... 89, ... 601, ...
- Dirichlet's theorem for Primes in APs: infinitely many primes containing 7
- Study of restricted digits began at the end of the 20th century
- Maynard's instrumental papers gave concrete results!

Theorem (Maynard, 2015-6)

```
Let q = 10, a_0 \in \{0, ..., q - 1\} and A = \{\sum_{i>0} n_i q^i : n_i \in \{0, ..., q - 1\} \setminus \{a_0\}\}.
```

There are infinitely many primes with no digit a_0 when written in base q.

\mathbb{Z}	$\mathbb{F}_q[t]$
Rational prime	Irreducible polynomial
Base <i>b</i>	q
Digit	Coefficient

\mathbb{Z}	$\mathbb{F}_q[t]$
Rational prime	Irreducible polynomial
Base <i>b</i>	q
Digit	Coefficient

ullet 1924, Artin: analogue of Prime Number Theorem for APs for $\mathbb{F}_q[t]$

\mathbb{Z}	$\mathbb{F}_q[t]$
Rational prime	Irreducible polynomial
Base b	q
Digit	Coefficient

- 1924, Artin: analogue of Prime Number Theorem for APs for $\mathbb{F}_q[t]$
- Cohen, Hayes' work in the 1960s onwards

\mathbb{Z}	$\mathbb{F}_q[t]$
Rational prime	Irreducible polynomial
Base b	q
Digit	Coefficient

- 1924, Artin: analogue of Prime Number Theorem for APs for $\mathbb{F}_{\sigma}[t]$
- Cohen, Hayes' work in the 1960s onwards

 THEOREM 5.3. If te₩_H, then

$$\left| f(t) - \frac{1}{q^s \Phi(H)} \cdot \frac{q^r}{r} \cdot T_H(t) \right| < 2q^{1/4} q^{(1/4 + \Theta)r},$$

where $\Phi(H)$ is the number of polynomials in a reduced residue system modulo H.

Hayes, D. "The expression of a polynomial as a sum of three irreducibles." *Acta Arithmetica* **11.4** (1966): 461-488.

- Circle method setup:
 - $\mathbb{F}_q((1/t)) = \{ \sum_{i < j} x_i t^i : x_i \in \mathbb{F}_q, j \in \mathbb{Z} \}$, polynomial norm

- Circle method setup:
 - $\mathbb{F}_q((1/t)) = \{ \sum_{i < j} x_i t^i : x_i \in \mathbb{F}_q, j \in \mathbb{Z} \}$, polynomial norm
 - 'Circle': $\mathbb{T}:=\{\sum_{i<0}^{-}x_it^i:x_i\in\mathbb{F}_q\}$, the maximal ideal of $\mathbb{F}_q[1/t]$

- Circle method setup:
 - $\mathbb{F}_q((1/t)) = \{ \sum_{i \leq j} x_i t^i : x_i \in \mathbb{F}_q, j \in \mathbb{Z} \}$, polynomial norm
 - 'Circle': $\mathbb{T}:=\{\sum_{i<0}^- x_i t^i : x_i\in \mathbb{F}_q\}$, the maximal ideal of $\mathbb{F}_q[1/t]$
 - Additive character $\mathbf{e}_q: \mathbb{F}_q((1/t)) \to \mathbb{C}^{\times}$, Haar measure, $S_{\mathcal{R}}(x) = \sum_{m \in \mathcal{M}_{\mathcal{R}}(n)} \mathbf{e}_q(mx)$

- Circle method setup:
 - $\mathbb{F}_q((1/t)) = \{ \sum_{i < j} x_i t^i : x_i \in \mathbb{F}_q, j \in \mathbb{Z} \}$, polynomial norm
 - 'Circle': $\mathbb{T}:=\{\sum_{i<0}^{-}x_it^i:x_i\in\mathbb{F}_q\}$, the maximal ideal of $\mathbb{F}_q[1/t]$
 - Additive character $\mathbf{e}_q: \mathbb{F}_q((1/t)) \to \mathbb{C}^{\times}$, Haar measure, $S_{\mathcal{R}}(x) = \sum_{m \in \mathcal{M}_{\mathcal{R}}(n)} \mathbf{e}_q(mx)$ $N(\mathcal{R}, n) = \int_{\mathbb{T}} \sum_{\substack{\deg p = n \\ p \text{ monic irred.}}} \mathbf{e}_q(px) \cdot \overline{S_{\mathcal{R}}(x)} dx.$

- Circle method setup:
 - $\mathbb{F}_q((1/t)) = \{ \sum_{i < j} x_i t^i : x_i \in \mathbb{F}_q, j \in \mathbb{Z} \}$, polynomial norm
 - 'Circle': $\mathbb{T}:=\{\sum_{i<0}^{-}x_it^i:x_i\in\mathbb{F}_q\}$, the maximal ideal of $\mathbb{F}_q[1/t]$
 - Additive character $\mathbf{e}_q: \mathbb{F}_q((1/t)) \to \mathbb{C}^{\times}$, Haar measure, $S_{\mathcal{R}}(x) = \sum_{m \in \mathcal{M}_{\mathcal{R}}(n)} \mathbf{e}_q(mx)$ $N(\mathcal{R}, n) = \int_{\mathbb{T}} \mathbf{S}(x) \cdot \overline{S_{\mathcal{R}}(x)} dx.$

- Circle method setup:
 - $\mathbb{F}_q((1/t)) = \{\sum_{i \le i} x_i t^i : x_i \in \mathbb{F}_q, j \in \mathbb{Z} \}$, polynomial norm
 - 'Circle': $\mathbb{T}:=\{\sum_{i<0}^n x_it^i: x_i\in\mathbb{F}_q\}$, the maximal ideal of $\mathbb{F}_q[1/t]$
 - Additive character $\mathbf{e}_q: \mathbb{F}_q((1/t)) \to \mathbb{C}^{\times}$, Haar measure, $S_{\mathcal{R}}(x) = \sum_{m \in \mathcal{M}_{\mathcal{R}}(n)} \mathbf{e}_q(mx)$ $N(\mathcal{R}, n) = \int_{\mathbb{T}} S(x) \cdot \overline{S_{\mathcal{R}}(x)} dx.$

Lemma (from Hayes, 1966)

 $a,g\in \mathbb{F}_q[t]$ two coprime polynomials, $\gamma\in \mathbb{T}$ s.t. $|a|<|g|\leq q^{n/2}$ and $|\gamma|<1/q^{\deg g+n/2};\ |E|\leq q^{n-\frac{1}{2}[\frac{n}{2}]}$:

$$S\left(\frac{a}{g} + \gamma\right) = \frac{\mu(g)}{\phi(g)}\pi(n)\mathbf{e}_q(\gamma t^n)\mathbf{1}_{|\gamma| < 1/q^n} + E$$

- Circle method setup:
 - $\mathbb{F}_q((1/t)) = \{ \sum_{i < j} x_i t^i : x_i \in \mathbb{F}_q, j \in \mathbb{Z} \}$, polynomial norm
 - 'Circle': $\mathbb{T}:=\{\sum_{i<0}^- x_i t^i : x_i\in \mathbb{F}_q\}$, the maximal ideal of $\mathbb{F}_q[1/t]$
 - Additive character $\mathbf{e}_q: \mathbb{F}_q((1/t)) \to \mathbb{C}^{\times}$, Haar measure, $S_{\mathcal{R}}(x) = \sum_{m \in \mathcal{M}_{\mathcal{R}}(n)} \mathbf{e}_q(mx)$ $N(\mathcal{R}, n) = \int_{\mathbb{T}} S(x) \cdot \overline{S_{\mathcal{R}}(x)} dx.$

Lemma (Porritt, 2017)

Let $a, g \in \mathbb{F}_q[t]$ be coprime polynomials with |a| < |g|, g not a power of t and let $k = \deg g > 0$. Then

$$|S_{\mathcal{R}}(a/g)| \leq (q-s)^{n-\left[\frac{n}{k}\right]} s^{\left[\frac{n}{k}\right]}.$$

A result of Porritt

Theorem

Let $\mathcal{R} \subset \mathbb{F}_q$ be a subset of size s and assume $s < \sqrt{q}/2$. Suppose that q > 500 and $n > 100(\log q)^2$.

The number of irreducible, monic polynomials of degree n with coefficients only from $\mathbb{F}_q \setminus \mathcal{R}$ (except possibly the leading 1) is given by

$$\frac{q}{q-1}\frac{(q-s)^n}{n}\left(\Lambda+O\left(q^{-n^{1/2}/7}\right)\right),\,$$

where

$$\Lambda = \begin{cases} 1 & \text{if } 0 \in \mathcal{R} \\ 1 - \frac{1}{a - s} & \text{if } 0 \notin \mathcal{R}. \end{cases}$$

 Squarefree polynomials are not divisible by the square of any irreducible polynomial

- Squarefree polynomials are not divisible by the square of any irreducible polynomial
- Estimate $\#N' = \#\{f : P^2 \nmid f, \deg P \text{ small}\}$, then check that $\#N'' = \#\{f : \exists P, P^2 \mid f, \deg P \text{ large}\}$ gives a small contribution

- Squarefree polynomials are not divisible by the square of any irreducible polynomial
- Estimate $\#N' = \#\{f : P^2 \nmid f, \deg P \text{ small}\}$, then check that $\#N'' = \#\{f : \exists P, P^2 \mid f, \deg P \text{ large}\}$ gives a small contribution
- To exclude small primes, use the Brun sieve
- For the large primes, we make use of the function field:

- Squarefree polynomials are not divisible by the square of any irreducible polynomial
- Estimate $\#N' = \#\{f : P^2 \nmid f, \deg P \text{ small}\}$, then check that $\#N'' = \#\{f : \exists P, P^2 \mid f, \deg P \text{ large}\}$ gives a small contribution
- To exclude small primes, use the Brun sieve
- For the large primes, we make use of the function field:

$$\bullet$$
 Bound by a triple sum $\sum_{d \in T_n} \sum_{\substack{P \mid d \\ \deg P > m_2}} \sum_{\substack{f \in S_n \\ P \mid f}} 1$

- Inner sum is easy to crudely bound
- Innermost sum depends on how the coefficients of f indexed by multiples of p, the characteristic of \mathbb{F}_q .

Small primes approach

The 'small' range will consist of primes of degree up to some m_1 .

Small primes approach

The 'small' range will consist of primes of degree up to some m_1 .

$$\#N' = \sum_{j=0}^{\infty} (-1)^j \sum_{\substack{D \mid \mathcal{P}(m_1) \\ \omega(D) = j}} \#\{m \in \mathcal{M}_{\mathcal{R}}^n : D^2 \mid m\}. \tag{1}$$

Small primes approach

The 'small' range will consist of primes of degree up to some m_1 .

$$\#N' = \sum_{j=0}^{\infty} (-1)^j \sum_{\substack{D \mid \mathcal{P}(m_1) \\ \omega(D) = j}} \#\{m \in \mathcal{M}_{\mathcal{R}}^n : D^2 \mid m\}. \tag{1}$$

$$\sum_{m \in \mathcal{M}_{\mathcal{R}}} \mathbb{1}_{g|m} = \sum_{m \in \mathcal{M}_{\mathcal{R}}} \frac{1}{|g|} \sum_{\deg a < \deg g} \mathbf{e}_q \left(\frac{am}{g} \right) = \frac{1}{|g|} \sum_{\deg a < \deg g} S_{\mathcal{R}} \left(\frac{a}{g} \right)$$

Lemma (Porritt, 2017)

Let $a, g \in \mathbb{F}_q[t]$ be coprime polynomials with |a| < |g|, g not a power of t and let $k = \deg g > 0$. Then

$$|S_{\mathcal{R}}(a/g)| \leq (q-s)^{n-\left[\frac{n}{k}\right]} s^{\left[\frac{n}{k}\right]}.$$

• S_n is the set of degree n polynomials with restricted coefficients, and T_n is the set of derivatives of elements of S_n

- S_n is the set of degree n polynomials with restricted coefficients, and T_n is the set of derivatives of elements of S_n
- $\#S_n = (q s)^n$

- S_n is the set of degree n polynomials with restricted coefficients, and T_n is the set of derivatives of elements of S_n
- $\#S_n = (q s)^n$

$$\sum_{\substack{d \in T_n \\ \deg P > m_2}} \sum_{\substack{f \in S_n \\ f' = d \\ P \mid f}} 1$$

- S_n is the set of degree n polynomials with restricted coefficients, and T_n is the set of derivatives of elements of S_n
- $\#S_n = (q-s)^n$ $(q-s)^{n-1-\lceil \frac{n-1}{p} \rceil} \sum_{\substack{P \mid d \\ \deg P > m_2 \ f' = d \\ P \mid f}} \sum_{\substack{f \in S_n \\ P \mid f}} 1$

- S_n is the set of degree n polynomials with restricted coefficients, and T_n is the set of derivatives of elements of S_n
- $\#S_n = (q s)^n$

$$(q-s)^{n-1-\lceil\frac{n-1}{p}\rceil}\cdot\frac{n-1}{m_2}\cdot\sum_{\substack{f\in S_n\\f'=d\\p\mid f}}1$$

$$(q-s)^{n-1-\lceil \frac{n-1}{p} \rceil} \cdot \frac{n-1}{m_2} \cdot \sum_{\substack{f \in S_n \\ f'=d \\ P \mid f}} 1$$

If f'=d then $f=f_0+\sum_{i\leq n/p}a_it^{pi}$, where $f_0'=d$. Since $f\equiv 0\pmod P$ and we are over the finite field \mathbb{F}_q of characteristic p, we get $f_0+(\sum_{i\leq n/p}a_i^{q/p}t^i)^p\equiv 0\pmod P$ and hence $\sum_{i\leq n/p}a_i^{q/p}t^i\equiv -f_0^{q^{\deg P}/p}\pmod P$

If f'=d then $f=f_0+\sum_{i\leq n/p}a_it^{pi}$, where $f_0'=d$. Since $f\equiv 0\pmod P$ and we are over the finite field \mathbb{F}_q of characteristic p, we get $f_0+(\sum_{i\leq n/p}a_i^{q/p}t^i)^p\equiv 0\pmod P$ and hence $\sum_{i\leq n/p}a_i^{q/p}t^i\equiv -f_0^{q^{\deg P}/p}\pmod P$

Lemma (B. 2025, after He-Pham-Xu, 2022)

Let $f(t) = \sum_{0 \leq i \leq n-1} \varepsilon_i t^i + t^n$ a polynomial of degree n in $\mathbb{F}_q[t]$, with ε_i independent and chosen uniformly at random from their respective allowed set of coefficients, \mathcal{R}_i^c . Then given a prime polynomial P,

$$\mathbb{P}[P \mid f] \leq \left(\frac{q-1+C}{a}\right)^{\deg P-1}.$$

The result

Theorem (B.-Gorodetsky, 2025)

Let $\overline{\mathcal{R}}=(\mathcal{R}_1,\ldots,\mathcal{R}_n)\subset \mathbb{F}_q^n$ be an ordered collection of subsets of size s. The number of squarefree, monic polynomials of degree n with the coefficient of t^{n-i} only from $\mathbb{F}_q\backslash\mathcal{R}_i$ is given by

$$\zeta_q^{-1}(2)(q-s)^n(1+o(1)).$$

The result

Theorem (B.–Gorodetsky, 2025)

Let $\overline{\mathcal{R}} = (\mathcal{R}_1, \dots, \mathcal{R}_n) \subset \mathbb{F}_q^n$ be an ordered collection of subsets of size s. The number of squarefree, monic polynomials of degree n with the coefficient of t^{n-i} only from $\mathbb{F}_q \setminus \mathcal{R}_i$ is given by

$$\zeta_a^{-1}(2)(q-s)^n(1+o(1)).$$

Thank you for listening!