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History Results Present and future work

Primes with restricted digits

Primes: 2, 3, 5, 7, . . . 41, . . . 89, . . . 601, . . .

Dirichlet’s theorem for Primes in APs: infinitely many primes
containing 7

Study of restricted digits began at the end of the 20th century

Maynard’s instrumental papers gave concrete results!

Theorem (Maynard, 2015-6)

Let a0 ∈ {0, . . . , q − 1} and
A = {

∑
i≥0 niq

i : ni ∈ {0, . . . , q − 1}\{a0}}.
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Primes with restricted digits

Primes: 2, 3, 5, 7, . . . 41, . . . 89, . . . 601, . . .

Dirichlet’s theorem for Primes in APs: infinitely many primes
containing 7

Study of restricted digits began at the end of the 20th century

Maynard’s instrumental papers gave concrete results!

Theorem (Maynard, 2015-6)

Let q > 2, 000, 000, a0 ∈ {0, . . . , q − 1} and
A = {

∑
i≥0 niq

i : ni ∈ {0, . . . , q − 1}\{a0}}.
Then for any constant A > 0,

∑
n<qk

Λ(n)1A(n) = κq(a0)(q − 1)k + OA

( (q − 1)k

(log qk)A

)
.
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Primes with restricted digits

Primes: 2, 3, 5, 7, . . . 41, . . . 89, . . . 601, . . .

Dirichlet’s theorem for Primes in APs: infinitely many primes
containing 7

Study of restricted digits began at the end of the 20th century

Maynard’s instrumental papers gave concrete results!

Theorem (Maynard, 2015-6)

Let q > 2, 000, 000, a0 ∈ {0, . . . , q − 1} and
A = {
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i≥0 niq
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There are infinitely many primes with no digit a0 when written in
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Primes with restricted digits

Primes: 2, 3, 5, 7, . . . 41, . . . 89, . . . 601, . . .

Dirichlet’s theorem for Primes in APs: infinitely many primes
containing 7

Study of restricted digits began at the end of the 20th century

Maynard’s instrumental papers gave concrete results!

Theorem (Maynard, 2015-6)

Let q = 10, a0 ∈ {0, . . . , q − 1} and
A = {

∑
i≥0 niq

i : ni ∈ {0, . . . , q − 1}\{a0}}.
There are infinitely many primes with no digit a0 when written in
base q.
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History Results Present and future work

The Function Field Analogue

Z Fq[t]

Rational prime Irreducible polynomial
Base b q
Digit Coefficient

1924, Artin: analogue of Prime Number Theorem for APs for
Fq[t]

Cohen, Hayes’ work in the 1960s onwards

Hayes, D. ”The expression of a polynomial as a sum of three
irreducibles.” Acta Arithmetica 11.4 (1966): 461-488.
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Porritt’s work on polynomials with restricted digits

Circle method setup:

Fq((1/t)) = {
∑

i≤j xi t
i : xi ∈ Fq, j ∈ Z }, polynomial norm

‘Circle’: T := {
∑

i<0 xi t
i : xi ∈ Fq}, the maximal ideal of

Fq[1/t]
Additive character eq : Fq((1/t)) → C×, Haar measure,
SR(x) =

∑
m∈MR(n)

eq(mx)

N(R, n) =

∫
T
·SR(x)dx .
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Circle method setup:

Fq((1/t)) = {
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i≤j xi t
i : xi ∈ Fq, j ∈ Z }, polynomial norm

‘Circle’: T := {
∑

i<0 xi t
i : xi ∈ Fq}, the maximal ideal of

Fq[1/t]
Additive character eq : Fq((1/t)) → C×, Haar measure,
SR(x) =

∑
m∈MR(n)

eq(mx)

N(R, n) =

∫
T

∑
deg p=n

p monic irred.

eq(px) · SR(x)dx .
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Porritt’s work on polynomials with restricted digits

Circle method setup:
Fq((1/t)) = {

∑
i≤j xi t

i : xi ∈ Fq, j ∈ Z }, polynomial norm

‘Circle’: T := {
∑

i<0 xi t
i : xi ∈ Fq}, the maximal ideal of

Fq[1/t]
Additive character eq : Fq((1/t)) → C×, Haar measure,
SR(x) =

∑
m∈MR(n)

eq(mx)

N(R, n) =

∫
T
S(x) · SR(x)dx .

Lemma (from Hayes, 1966)

a, g ∈ Fq[t] two coprime polynomials, γ ∈ T s.t. |a| < |g | ≤ qn/2

and |γ| < 1/qdeg g+n/2; |E | ≤ qn−
1
2
[ n
2
]:

S

(
a

g
+ γ

)
=

µ(g)

ϕ(g)
π(n)eq(γt

n)1|γ|<1/qn + E
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Porritt’s work on polynomials with restricted digits

Circle method setup:

Fq((1/t)) = {
∑

i≤j xi t
i : xi ∈ Fq, j ∈ Z }, polynomial norm

‘Circle’: T := {
∑

i<0 xi t
i : xi ∈ Fq}, the maximal ideal of

Fq[1/t]
Additive character eq : Fq((1/t)) → C×, Haar measure,
SR(x) =

∑
m∈MR(n)

eq(mx)

N(R, n) =

∫
T
S(x) · SR(x)dx .

Lemma (Porritt, 2017)

Let a, g ∈ Fq[t] be coprime polynomials with |a| < |g |,
g not a power of t and let k = deg g > 0. Then

|SR(a/g)| ≤ (q − s)n−[ n
k
]s [

n
k
].
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A result of Porritt

Theorem

Let R ⊂ Fq be a subset of size s and assume s <
√
q/2.

Suppose that q ≥ 500 and n ≥ 100(log q)2.
The number of irreducible, monic polynomials of degree n with
coefficients only from Fq\R (except possibly the leading 1) is
given by

q

q − 1

(q − s)n

n

(
Λ + O

(
q−n1/2/7

))
,

where

Λ =

{
1 if 0 ∈ R
1− 1

q−s if 0 /∈ R.
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Squarefree polynomials

Squarefree polynomials are not divisible by the square of any
irreducible polynomial

Estimate #N ′ = #{f : P2 ∤ f , degP small}, then check that
#N ′′ = #{f : ∃P,P2 | f , degP large} gives a small
contribution

To exclude small primes, use the Brun sieve

For the large primes, we make use of the function field:

Bound by a triple sum
∑
d∈Tn

∑
P|d

deg P>m2

∑
f∈Sn

f ′=d
P|f

1

Inner sum is easy to crudely bound
Innermost sum depends on how the coefficients of f indexed
by multiples of p, the characteristic of Fq.
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Small primes approach

The ‘small’ range will consist of primes of degree up to some m1.

#N ′ =
∞∑
j=0

(−1)j
∑

D|P(m1)
ω(D)=j

#{m ∈ Mn
R : D2 | m}. (1)

∑
m∈MR

1g |m =
∑

m∈MR

1

|g |
∑

deg a<deg g

eq

(
am

g

)
=

1

|g |
∑

deg a<deg g

SR

( a

g

)
Lemma (Porritt, 2017)

Let a, g ∈ Fq[t] be coprime polynomials with |a| < |g |,
g not a power of t and let k = deg g > 0. Then

|SR(a/g)| ≤ (q − s)n−[ n
k
]s [

n
k
].
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Large primes approach

Sn is the set of degree n polynomials with restricted
coefficients, and Tn is the set of derivatives of elements of Sn

#Sn = (q − s)n
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Sn is the set of degree n polynomials with restricted
coefficients, and Tn is the set of derivatives of elements of Sn
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Large primes approach

Sn is the set of degree n polynomials with restricted
coefficients, and Tn is the set of derivatives of elements of Sn

#Sn = (q − s)n

(q − s)n−1−⌈ n−1
p

⌉ ∑
P|d

degP>m2

∑
f ∈Sn
f ′=d
P|f

1
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Large primes approach

Sn is the set of degree n polynomials with restricted
coefficients, and Tn is the set of derivatives of elements of Sn

#Sn = (q − s)n

(q − s)n−1−⌈ n−1
p

⌉ · n − 1

m2
·
∑
f ∈Sn
f ′=d
P|f

1
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Large primes approach

(q − s)n−1−⌈ n−1
p

⌉ · n − 1

m2
·
∑
f ∈Sn
f ′=d
P|f

1

If f ′ = d then f = f0 +
∑

i≤n/p ai t
pi , where f ′0 = d . Since f ≡ 0

(mod P) and we are over the finite field Fq of characteristic p, we

get f0 + (
∑

i≤n/p a
q/p
i t i )p ≡ 0 (mod P) and hence∑

i≤n/p a
q/p
i t i ≡ −f

qdeg P/p
0 (mod P)
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Large primes approach

If f ′ = d then f = f0 +
∑

i≤n/p ai t
pi , where f ′0 = d . Since f ≡ 0

(mod P) and we are over the finite field Fq of characteristic p, we

get f0 + (
∑

i≤n/p a
q/p
i t i )p ≡ 0 (mod P) and hence∑

i≤n/p a
q/p
i t i ≡ −f

qdeg P/p
0 (mod P)

Lemma (B. 2025, after He-Pham-Xu, 2022)

Let f (t) =
∑

0≤i≤n−1 εi t
i + tn a polynomial of degree n in Fq[t],

with εi independent and chosen uniformly at random from their
respective allowed set of coefficients, Rc

i . Then given a prime
polynomial P,

P[P | f ] ≤
(q − 1 + C

q

)degP−1
.
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The result

Theorem (B.–Gorodetsky, 2025)

Let R = (R1, . . . ,Rn) ⊂ Fn
q be an ordered collection of subsets of

size s. The number of squarefree, monic polynomials of degree n
with the coefficient of tn−i only from Fq\Ri is given by

ζ−1
q (2)(q − s)n(1 + o(1)).

Thank you for listening!
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