Analytic orders for Tate–Shafarevich groups and regulators of lower-rank quadratic twisted elliptic curves

Shenghao Hua Shandong U & EPFL

Aarhus Automorphic Forms Conference

Outline

 $lue{1}$ Elliptic curve and L-functions

2 Analytic rank 0

3 Analytic rank 1

Definition

Elliptic curve

An elliptic curve ${\cal E}$ over field ${\cal K}$ is the set of soultions of an equation of the form

$$Ax^{3} + Bx^{2}y + Cxy^{2} + Dy^{3} + Ex^{2} + Fxy + Gy^{2} + Hx + Iy + J = 0,$$

and all coefficients are in K.

Weierstrass form

After linear changing of variables, ${\cal E}$ can be written in the form

$$y^2 = x^3 + ax + b,$$

with $a,b\in K$. This type of equation is called a Weierstrass normal form.

Here we let $\Delta(E)=-16(4a^3+27b^2)\neq 0$, then the elliptic curve has curve genus 1.

Group law

Take 2 points P and Q. Now "draw" a straight line through them and compute the third point of intersection R, set infinity be the identity point,

$$P + Q + R = 0,$$

and the inverse of R = (x, y) is -R = (x, -y).

(Image produced by Ashley Neal)

Mordell-Weil group

Mordell-Weil theorem

Let K be an finitely extension field of $\mathbb Q$. The group E(K) of K-rational points is a finitely–generated abelian group, called the Mordell–Weil group.

$$E(K) \cong E(K)_{\mathsf{tors}} \times \mathbb{Z}^r,$$

where $E(K)_{\text{tors}}$ is the torsion subgroup, in which every element has finite order, and r is the (algebraic) rank of E(K).

Mazur: $E_{\mathsf{tors}}(\mathbb{Q})$ is one of 15 possible groups

Kenku–Momose, Kamienny: for quadratic field K, $E_{\mathsf{tors}}(K)$ is one of 18 possible groups

The maximal free subgroup of E(K) is a lattice, with the volume ${\rm Reg}(E/K)$, with some kind of "canonical height" (Néron–Tate height).

Local-Global obstruction

Global→ Local

For index set I, rational equations

$$f_i(x_1, \dots, x_n) = 0, \quad (i \in I)$$

have K solutions only if they have solutions in every (∞ or finite) places of K.

Could us go back (Local→ Global)?

Local-Global obstruction

Global→ Local

For index set I, rational equations

$$f_i(x_1, \dots, x_n) = 0, \quad (i \in I)$$

have K solutions only if they have solutions in every (∞ or finite) places of K.

Could us go back (Local→ Global)?

Tate-Shafarevich group

$$\mathrm{III}(E(\mathbb{Q})) := \cap_v \ker(\mathrm{H}^1(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), E) \to \mathrm{H}^1(\mathrm{Gal}(\overline{\mathbb{Q}_v}/\mathbb{Q}_v), E),$$

is the quotient from local to global.

Questions

How large it is? How it looks like?

Questions

How large it is? How it looks like?

Tate-Shafarevich conjecture

For any K and E(K), it's finite group.

Questions

How large it is? How it looks like?

Tate-Shafarevich conjecture

For any K and E(K), it's finite group.

Cassels's pairing

There is an alternating bilinear pairing

$$\langle \cdot, \cdot \rangle : \coprod(E) \times \coprod(E) \to \mathbb{Q}/\mathbb{Z},$$

which is non-degenerate assuming $\mathrm{III}(E)$ is finite. Then there exists an isotropic subgroup $H(E)\subseteq \mathrm{III}(E)$, meaning that $\langle x,y\rangle=0$ for all $x,y\in H(E)$, with $\#H(E)^2=\#\mathrm{III}(E)$, and such subgroups generate $\mathrm{III}(E)$.

Questions

How large it is? How it looks like?

Tate-Shafarevich conjecture

For any K and E(K), it's finite group.

Cassels's pairing

There is an alternating bilinear pairing

$$\langle \cdot, \cdot \rangle : \coprod(E) \times \coprod(E) \to \mathbb{Q}/\mathbb{Z},$$

which is non-degenerate assuming $\mathrm{III}(E)$ is finite. Then there exists an isotropic subgroup $H(E)\subseteq \mathrm{III}(E)$, meaning that $\langle x,y\rangle=0$ for all $x,y\in H(E)$, with $\#H(E)^2=\#\mathrm{III}(E)$, and such subgroups generate $\mathrm{III}(E)$.

Gross-Zagier 1986, Kolyvagin 1990

For modular elliptic curves with \mathbb{Q} -rational coefficients and analytic rank at most 1, its Tate–Shafarevich group a finite group.

Hasse–Weil L-function of E

Take $a_{\mathfrak{p}}=\mathrm{N}(\mathfrak{p})+1-\#E(\mathcal{O}_K/\mathfrak{p})$, the Hasse–Weil L-function of E over K with central point at 1 is

$$L(s, E/K) = \prod_{\mathfrak{p}} \frac{1}{1 - a_{\mathfrak{p}} \mathcal{N}(\mathfrak{p})^{-s} + \mathcal{N}(\mathfrak{p})^{1-2s}}, \operatorname{Re}(s) \gg 1,$$

Thanks to the modularity theorem (Wiles 1995, Diamond 1996, Conrad–Diamond–Taylor 1999, Breuil–Conrad–Diamond–Taylor 2001), we have the functional equation and analytic continuation for Hasse–Weil L-function for elliptic curves with \mathbb{Q} -rational coefficients.

Analytic rank

The vanishing order of L(s,E/K) at central point is the so-called analytic rank.

Gross-Zagier 1986, Kolyvagin 1990

Let $K=\mathbb{Q}$, when analytic rank ≤ 1 , we have algebraic rank equals to analytic rank.

Birch and Swinnerton-Dyer conjecture

Birch and Swinnerton-Dyer conjecture

For E over number field K,

$$\lim_{s \to \text{central}} \frac{L(s, E/K)}{(s - \text{central})^r}$$

$$= \frac{\# \text{III}(E/K) \operatorname{Reg}(E/K) \Omega_{E/K} \prod_{v \text{ finite}} \operatorname{Tam}_v(E(K))}{(\# E(K)_{\text{tors}})^2},$$

where:

- $r = \operatorname{ord}_{\operatorname{central\ point\ } s} L(E/K, s)$ is the analytic rank of E,
- $\mathrm{III}(E/K)$ is the Shafarevich–Tate group,
- $\Omega_{E/K} = \prod_{v \mid \infty} \int_{E(K_v)^0} |\omega|$ is the product of the real or complex periods at the archimedean places,
- ullet $\mathrm{Tam}_v(E(K))$ are the Tamagawa numbers at the finite places v of K,
- $E(K)_{tors}$ is the torsion subgroup of E(K).

Quadratic twists of E

Let $K = \mathbb{Q}$. Let E be an elliptic curve of the form

$$y^2 = x^3 + ax + b.$$

Given square-free d, the quadratic twist of E is the curve $E^{(d)}$, defined by the equation

$$y^2 = x^3 + ad^2x + bd^3.$$

For $Re(s) \gg 1$

$$L(s, E) = L(s, E/\mathbb{Q}) = \sum_{n=1}^{\infty} a(n)n^{-s} \Rightarrow L(s, E^{(d)}) = \sum_{n=1}^{\infty} a(n)\chi_d(n)n^{-s}$$

For d < 0, we have base change L-function

$$L(s, E/\mathbb{Q}(\sqrt{d})) = L(s, E)L(s, E^{(d)}).$$

We normalize the central point to $s = \frac{1}{2}$.

Analytic rank 0: Admissible congruence classes

Let

$$\Omega := \{d : \mu(d)^2 = 1, \ (d, 2N) = 1, \epsilon_{E(d)} = \epsilon_E \chi_d(-N) = 1\}.$$

Let $N_0=[8,N]$. Let $\sigma\in\{\pm 1\}$ and $a\pmod{N_0}$ denote a residue class with $a\equiv 1\pmod{4}$. We assume that σ and a are such that for any fundamental discriminant d of sign σ with $d\equiv a\pmod{N_0}$, the root number $\epsilon_{E(d)}=1$. Define

$$\Omega(a,\sigma) := \{ d \in \Omega : d \equiv a \pmod{N_0}, \ \sigma d > 0 \}.$$

Analytic rank 0: Analytic order of $\mathrm{III}(E^{(d)})$

For $d \in \Omega$, then

$$S(E^{(d)}) = L\left(\frac{1}{2}, E_{E^{(d)}}\right) \frac{|E^{(d)}(\mathbb{Q})_{tors}|^2}{\Omega(E^{(d)}) \operatorname{Tam}(E^{(d)})}.$$

If $L(\frac{1}{2},E^{(d)})\neq 0$, then the Birch and Swinnerton-Dyer conjecture predicts that $S(E^{(d)})=\mathrm{III}(E^{(d)})$.

Order of real period (Pal 2012)

For square-free (d,2N)=1, the real period $\Omega(E^{(d)})$ satisfies

$$\Omega(E^{(d)}) = \frac{\tilde{u}}{\sqrt{|d|}}\Omega(E)$$

with some $\tilde{u} \in \frac{1}{2}\mathbb{Z}$ only decided by E.

Radziwiłł-Soundararajan 2015 & 2024

Assuming the BSD conjecture (and the GRH), we have one-sided (two-sided) central limit theorem for $\log\left(\mathrm{III}(E^{(d)})\mathrm{Tam}(E^{(d)})\right)$ with $d\in\Omega(a,\sigma)$.

A barrier

We have $\operatorname{Tam}_p(d)=1$ for $p\nmid dN_0$, $\operatorname{Tam}_p(d)$ is fixed for $p\mid N_0$ even if d changes, and $\operatorname{Tam}_p(d)\in\{1,2,4\}$ for $p\mid d$.

trivial bound

 $\tau(\boldsymbol{d})$ has the extremal large order as

$$\exp(\log 2 \frac{\log d}{\log \log d}).$$

Conjecture (Farmer-Gonek-Hughes 2007)

$$\max_{d \leq D} |L(\frac{1}{2}, E^{(d)})| = \exp((1+o(1))\sqrt{\log D \log \log D}).$$

Extreme analytic order of $\mathrm{III}(E^{(d)})$

H.–Huang (arXiv: 2212.13360)

For any fixed $W \geq 20$ and any odd a coprime to the conductor of E, we have

$$\max_{\substack{d \in \Omega(a,\sigma) \\ \frac{D}{2} \le |d| \le \frac{5D}{2} \\ \omega(d) \le W}} S(\text{III}(E^{(d)}) \ge \sqrt{D} \exp\left(\left(2\sqrt{\frac{W-19.73}{22W+12}} + o(1)\right) \frac{\sqrt{\log D}}{\sqrt{\log \log D}}\right)$$

as $D \to \infty$.

Reference:

Hua, Shenghao; Huang, Bingrong. Extreme central L-values of almost prime quadratic twists of elliptic curves. Sci. China Math. 66 (2023), no. 12, 2755–2766. (Dedicated to the 50th anniversary of Jing-run Chen's Theorem (1+2) on the Goldbach Conjecture)

Decorrelation of analytic order of isotropy subgroups of $\coprod(E^{(d)})$

H. (arXiv this week)

Let $1 \leq i \leq m$, and suppose each conductor N_i elliptic curve E_i is associate to a weight two Hecke eigenform f_i with root number ϵ_{f_i} . Fix $\sigma = \pm 1$. Let $N_0 = [8, N_1, \ldots, N_m]$. Let $a \mod N_0$ denote a residue class with $a \equiv 1 \pmod 4$ and $(a, N_0) = 1$ and for every fundamental discriminant $\sigma d > 0$ with $d \equiv a \pmod N_0$, the root numbers satisfy $\epsilon_{f_i}(d) = \epsilon_{f_i} \chi_d(-N_i) = 1$, for all $i = 1, \ldots, m$. Assume the GRH holds for $L(s, \operatorname{sym}^2 f_i)$ and $L(s, f_i \times \chi_d)$ for all f_i and for all $D \leq \sigma d \leq 2D$ with $d \equiv a \pmod N_0$, and the BSD conjecture holds for $E_i^{(d)}$. For any $\varepsilon > 0$, we have

$$\frac{1}{D} \sum_{\substack{D \le \sigma d \le 2D \\ \mu(|d|)^2 = 1 \\ d \equiv a \pmod{N_0}}} \prod_{i=1}^m \frac{\delta_{r(E_i^{(d)} = 0)} \# H(E_i^{(d)})}{|d|^{1/4}} \ll_{E_1, \dots, E_m, \varepsilon} (\log D)^{-\frac{m}{8} + \varepsilon}.$$

Decorrelation of mixed moments for quadratic twisted L-Functions

H. (arXiv this week)

- Decorrelation of quadratic twisted central L-values of even-weight Hecke eigenform or a Hecke–Maass form satisfying the Generalized Ramanujan Conjecture (GRC).
- Decorrelation of automorphic periods averaged over imaginary quadratic fields.
- Decorrelation of Fourier coefficients of half-integral weight modular forms.

Decorrelation of mixed moments for orthogonal families of L-Functions

Keating-Snaith conjecture / Katz-Sarnak philosophy

For orthogonal families of L-functions, the moments of central values in the range between order 0 and 1 (excluding the endpoints) contribute a negative power of \log in their leading-order asymptotics.

Multiple automorphic forms share the same symmetry type

Chandee's work on shifted moments of the Riemann zeta function, and later the work of Milinovich and Turnage-Butterbaugh on integral moments of product of *L*-functions.

Applications

- Lester—Radziwiłł proved quantum unique ergodicity for half-integral weight automorphic forms.
- Huang-Lester investigated the quantum variance of dihedral Maass forms.
- Blomer-Brumley-Khayutin (newly) proved the joint equidistribution conjecture of Michel and Venkatesh.
- Blomer–Brumley proved arithmetic quotients orbits joint equidistribution.
- Jääsaari–Lester–Saha established sign changes for coefficients of Siegel cusp forms of degree 2.
- Jääsaari–Lester–Saha showed that the mass of Saito–Kurokawa lifted holomorphic cuspidal Hecke eigenforms for $\mathrm{Sp}_4(\mathbb{Z})$ equidistributes on the Siegel modular variety as the weight tends to infinity.
- **H.**-Huang-Li proof a case of our joint Gaussian moment conjecture.
- Huang established holomorphic version.
 Chatzakos-Cherubini-Lester-Risager obtained a logarithmic improvement on Selberg's longstanding bound for the error term in the hyperbolic circle problem over Heegner points with varying
- discriminants. • **H.** demonstrated that for $0 , the <math>\ell^p$ -norm of some quadratic forms in holomorphic Hecke cusp forms tends to zero asymptotically.

Analytic rank 1: $\operatorname{Reg}(E/\mathbb{Q}(\sqrt{d}))$ and $\operatorname{Reg}(E^{(d)}/\mathbb{Q})$

Leibniz rule for imaginary quadratic field

$$L'(\frac{1}{2}, E/\mathbb{Q}(\sqrt{d})) = L(\frac{1}{2}, E)L'(\frac{1}{2}, E^{(d)}) + L'(\frac{1}{2}, E)L(\frac{1}{2}, E^{(d)})$$

Gross-Zagier formulas

Let E non-CM.

Heegner condition: d < 0, $d \equiv 1 \pmod{4}$, and $\left(\frac{d}{d}\right) = 1$ for all $q \mid N$.

Then for $r(E) + r(E^{(d)}) = 1$, we have

$$L'(\frac{1}{2}, E/\mathbb{Q}(\sqrt{d})) = \frac{32\pi^2 \|f_E\|^2}{|\mathcal{O}_{\mathbb{Q}(\sqrt{d})}^{\times}|^2 \sqrt{|d|} \cdot \deg \phi_E} \cdot \widehat{h}_{\mathbb{Q}(\sqrt{d})}(P_{\mathbb{Q}(\sqrt{d})}),$$

and for r(E) = 0, $r(E^{(d)}) = 1$, we have

$$L'(\frac{1}{2}, E^{(d)}) = \frac{32\pi^2 \|f_E\|^2}{|\mathcal{O}_{\mathbb{Q}(\sqrt{d})}^{\times}|^2 \sqrt{|d|} \cdot \deg \phi_E} \cdot \widehat{h}_{\mathbb{Q}}(P_d).$$

Analytic rank 1: $\operatorname{Reg}(E/\mathbb{Q}(\sqrt{d}))$ and $\operatorname{Reg}(E^{(d)}/\mathbb{Q})$

H. (arXiv: 2507.20297)

For ${\cal E}$ non-CM, and ${\it d}$ satisfies the Heegner condition.

- Handling some log contribution to get one-sided central limit theory for $\log \operatorname{Reg}(E/\mathbb{Q}(\sqrt{d}))$ and $\log \operatorname{Reg}(E^{(d)}/\mathbb{Q})$.
- Using Hölder's inequality to show lots of d such that $\operatorname{Reg}(E/\mathbb{Q}(\sqrt{d}))$ and $\operatorname{Reg}(E^{(d)}/\mathbb{Q})$ have size $\gg \sqrt{|d|}$.

Analytic rank 1: $\operatorname{Reg}(E/\mathbb{Q}(\sqrt{d}))$ and $\operatorname{Reg}(E^{(d)}/\mathbb{Q})$

H. (arXiv: 2507.20297)

For E non-CM, and d satisfies the Heegner condition.

- Handling some log contribution to get one-sided central limit theory for $\log \operatorname{Reg}(E/\mathbb{Q}(\sqrt{d}))$ and $\log \operatorname{Reg}(E^{(d)}/\mathbb{Q})$.
- Using Hölder's inequality to show lots of d such that $\operatorname{Reg}(E/\mathbb{Q}(\sqrt{d}))$ and $\operatorname{Reg}(E^{(d)}/\mathbb{Q})$ have size $\gg \sqrt{|d|}$.

$$\Omega_{E/\mathbb{Q}(\sqrt{d})} = \Omega_E^+ \cdot \Omega_{E^{(d)}}^+.$$

Order of imaginary period (Pal 2012)

For negative square-free (d, 2N) = 1,

$$\Omega_{E^{(d)}}^+ = \frac{\tilde{u}(d)}{\sqrt{|d|}} c_{\infty}(E^{(d)}) \Omega_E^-$$

with some $\tilde{u} \in \frac{1}{2}\mathbb{Z}$ decided by E, and $c_{\infty}(E^{(d)})$ denotes the number of connected components of $E^{(d)}(\mathbb{R})$, which is either 1 or 2.

Uniform boundedness theorem

H. (arXiv: 2507.20297)

For d satisfies the Heegner condition, assuming the BSD conjecture, there exist two constants C_1, C_2 depending on E such that

$$C_1 \le \# \coprod (E/\mathbb{Q}(\sqrt{d})) \prod_{v \text{ finite}} c_v(E/\mathbb{Q}(\sqrt{d})) \le C_2.$$

Moreover, when $L(\frac{1}{2},E)\neq 0$, this result also applies to $\#\mathrm{III}(E^{(d)}/\mathbb{Q})\prod_{p \ \mathrm{prime}} c_p(E^{(d)}/\mathbb{Q}).$

Thank you!