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Definition

Elliptic curve

An elliptic curve E over field K is the set of soultions of an equation of
the form

Ax3 +Bx2y + Cxy2 +Dy3 + Ex2 + Fxy +Gy2 +Hx+ Iy + J = 0,

and all coefficients are in K.

Weierstrass form

After linear changing of variables, E can be written in the form

y2 = x3 + ax+ b,

with a, b ∈ K. This type of equation is called a Weierstrass normal form.

Here we let ∆(E) = −16(4a3 + 27b2) ̸= 0, then the elliptic curve has
curve genus 1.
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Group law

Take 2 points P and Q. Now “draw” a straight line through them and
compute the third point of intersection R, set infinity be the identity
point,

P +Q+R = 0,

and the inverse of R = (x, y) is −R = (x,−y).

(Image produced by Ashley Neal)
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Mordell–Weil group

Mordell–Weil theorem

Let K be an finitely extension field of Q. The group E(K) of K-rational
points is a finitely–generated abelian group, called the Mordell–Weil
group.

E(K) ∼= E(K)tors × Zr,

where E(K)tors is the torsion subgroup, in which every element has finite
order, and r is the (algebraic) rank of E(K).

Mazur: Etors(Q) is one of 15 possible groups
Kenku–Momose, Kamienny: for quadratic field K, Etors(K) is one of 18
possible groups
The maximal free subgroup of E(K) is a lattice, with the volume
Reg(E/K), with some kind of “canonical height” (Néron–Tate height).
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Local-Global obstruction

Global→ Local

For index set I, rational equations

fi(x1, . . . , xn) = 0, (i ∈ I)

have K solutions only if they have solutions in every (∞ or finite) places
of K.

Could us go back (Local→ Global)?

Tate–Shafarevich group

X(E(Q)) := ∩v ker(H
1(Gal(Q/Q), E) → H1(Gal(Qv/Qv), E),

is the quotient from local to global.

6 / 27



Local-Global obstruction

Global→ Local

For index set I, rational equations

fi(x1, . . . , xn) = 0, (i ∈ I)

have K solutions only if they have solutions in every (∞ or finite) places
of K.

Could us go back (Local→ Global)?

Tate–Shafarevich group

X(E(Q)) := ∩v ker(H
1(Gal(Q/Q), E) → H1(Gal(Qv/Qv), E),

is the quotient from local to global.

7 / 27



Tate–Shafarevich group

Questions

How large it is? How it looks like?

Tate–Shafarevich conjecture

For any K and E(K), it’s finite group.

Cassels’s pairing

There is an alternating bilinear pairing

⟨·, ·⟩ : X(E)×X(E) → Q/Z,

which is non-degenerate assuming X(E) is finite. Then there exists an
isotropic subgroup H(E) ⊆ X(E), meaning that ⟨x, y⟩ = 0 for all
x, y ∈ H(E), with #H(E)2 = #X(E), and such subgroups generate
X(E).

Gross–Zagier 1986, Kolyvagin 1990

For modular elliptic curves with Q-rational coefficients and analytic rank
at most 1, its Tate–Shafarevich group a finite group.
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Hasse–Weil L-function of E

Take ap = N(p) + 1−#E(OK/p), the Hasse–Weil L-function of E over
K with central point at 1 is

L(s, E/K) =
∏
p

1

1− apN(p)−s +N(p)1−2s
, Re(s) ≫ 1,

Thanks to the modularity theorem (Wiles 1995, Diamond 1996,
Conrad–Diamond–Taylor 1999, Breuil–Conrad–Diamond–Taylor 2001),
we have the functional equation and analytic continuation for Hasse–Weil
L-function for elliptic curves with Q-rational coefficients.

Analytic rank

The vanishing order of L(s, E/K) at central point is the so-called
analytic rank.

Gross–Zagier 1986, Kolyvagin 1990

Let K = Q, when analytic rank ≤ 1, we have algebraic rank equals to
analytic rank.
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Birch and Swinnerton-Dyer conjecture

Birch and Swinnerton-Dyer conjecture

For E over number field K,

lim
s→central

L(s, E/K)

(s− central)r

=
#X(E/K)Reg(E/K)ΩE/K

∏
v finite Tamv(E(K))

(#E(K)tors)
2 ,

where:

r = ordcentral point sL(E/K, s) is the analytic rank of E,

X(E/K) is the Shafarevich–Tate group,

ΩE/K =
∏

v|∞
∫
E(Kv)0

|ω| is the product of the real or complex

periods at the archimedean places,

Tamv(E(K)) are the Tamagawa numbers at the finite places v of
K,

E(K)tors is the torsion subgroup of E(K).
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Quadratic twists of E

Let K = Q. Let E be an elliptic curve of the form

y2 = x3 + ax+ b.

Given square-free d, the quadratic twist of E is the curve E(d), defined
by the equation

y2 = x3 + ad2x+ bd3.

For Re(s) ≫ 1

L(s, E) = L(s, E/Q) =

∞∑
n=1

a(n)n−s ⇒ L(s, E(d)) =

∞∑
n=1

a(n)χd(n)n
−s

For d < 0, we have base change L-function

L(s, E/Q(
√
d)) = L(s, E)L(s, E(d)).

We normalize the central point to s = 1
2 .
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Analytic rank 0: Admissible congruence classes

Let

Ω := {d : µ(d)2 = 1, (d, 2N) = 1, ϵE(d) = ϵEχd(−N) = 1}.

Let N0 = [8, N ]. Let σ ∈ {±1} and a (mod N0) denote a residue class
with a ≡ 1 (mod 4). We assume that σ and a are such that for any
fundamental discriminant d of sign σ with d ≡ a (mod N0), the root
number ϵE(d) = 1. Define

Ω(a, σ) := {d ∈ Ω : d ≡ a (mod N0), σd > 0}.
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Analytic rank 0: Analytic order of X(E(d))
For d ∈ Ω, then

S(E(d)) = L

(
1

2
, EE(d)

)
|E(d)(Q)tors|2

Ω(E(d)) Tam(E(d))
.

If L( 12 , E
(d)) ̸= 0, then the Birch and Swinnerton-Dyer conjecture

predicts that S(E(d)) = X(E(d)).

Order of real period (Pal 2012)

For square-free (d, 2N) = 1, the real period Ω(E(d)) satisfies

Ω(E(d)) =
ũ√
|d|

Ω(E)

with some ũ ∈ 1
2Z only decided by E.

Radziwi l l–Soundararajan 2015 & 2024

Assuming the BSD conjecture (and the GRH), we have one-sided

(two-sided) central limit theorem for log
(
X(E(d)) Tam(E(d))

)
with

d ∈ Ω(a, σ).
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A barrier

We have Tamp(d) = 1 for p ∤ dN0, Tamp(d) is fixed for p | N0 even if d
changes, and Tamp(d) ∈ {1, 2, 4} for p | d.

trivial bound

τ(d) has the extremal large order as

exp(log 2
log d

log log d
).

Conjecture (Farmer–Gonek–Hughes 2007)

max
d≤D

|L(1
2
, E(d))| = exp((1 + o(1))

√
logD log logD).
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Extreme analytic order of X(E(d))

H.–Huang (arXiv: 2212.13360)

For any fixed W ≥ 20 and any odd a coprime to the conductor of E, we
have

max
d∈Ω(a,σ)

D
2 ≤|d|≤ 5D

2

ω(d)≤W

S(X(E(d)) ≥
√
D exp

((
2

√
W − 19.73

22W + 12
+ o(1)

) √
logD√

log logD

)
,

as D → ∞.

Reference:
Hua, Shenghao; Huang, Bingrong. Extreme central L-values of almost
prime quadratic twists of elliptic curves. Sci. China Math. 66 (2023),
no. 12, 2755–2766. (Dedicated to the 50th anniversary of Jing-run
Chen’s Theorem (1 + 2) on the Goldbach Conjecture)
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Decorrelation of analytic order of isotropy subgroups of

X(E(d))

H. (arXiv this week)

Let 1 ≤ i ≤ m, and suppose each conductor Ni elliptic curve Ei is
associate to a weight two Hecke eigenform fi with root number ϵfi . Fix
σ = ±1. Let N0 = [8, N1, . . . , Nm]. Let a mod N0 denote a residue class
with a ≡ 1 (mod 4) and (a,N0) = 1 and for every fundamental
discriminant σd > 0 with d ≡ a (mod N0), the root numbers satisfy
ϵfi(d) = ϵfiχd(−Ni) = 1, for all i = 1, . . . ,m.
Assume the GRH holds for L(s, sym2fi) and L(s, fi × χd) for all fi and
for all D ≤ σd ≤ 2D with d ≡ a (mod N0), and the BSD conjecture

holds for E
(d)
i . For any ε > 0, we have

1

D

∑
D≤σd≤2D
µ(|d|)2=1

d≡a (mod N0)

m∏
i=1

δ
r(E

(d)
i =0)

#H(E
(d)
i )

|d|1/4
≪E1,...,Em,ε (logD)−

m
8 +ε.
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Decorrelation of mixed moments for quadratic twisted
L-Functions

H. (arXiv this week)

Decorrelation of quadratic twisted central L-values of even-weight
Hecke eigenform or a Hecke–Maass form satisfying the Generalized
Ramanujan Conjecture (GRC).

Decorrelation of automorphic periods averaged over imaginary
quadratic fields.

Decorrelation of Fourier coefficients of half-integral weight modular
forms.
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Decorrelation of mixed moments for orthogonal families of
L-Functions

Keating–Snaith conjecture / Katz–Sarnak philosophy

For orthogonal families of L-functions, the moments of central values in
the range between order 0 and 1 (excluding the endpoints) contribute a
negative power of log in their leading-order asymptotics.

Multiple automorphic forms share the same symmetry type

Chandee’s work on shifted moments of the Riemann zeta function, and
later the work of Milinovich and Turnage-Butterbaugh on integral
moments of product of L-functions.
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Applications

Lester–Radziwi l l proved quantum unique ergodicity for half-integral
weight automorphic forms.
Huang–Lester investigated the quantum variance of dihedral Maass
forms.
Blomer–Brumley–Khayutin (newly) proved the joint equidistribution
conjecture of Michel and Venkatesh.
Blomer–Brumley proved arithmetic quotients orbits joint
equidistribution.
Jääsaari–Lester–Saha established sign changes for coefficients of
Siegel cusp forms of degree 2.
Jääsaari–Lester–Saha showed that the mass of Saito–Kurokawa lifted
holomorphic cuspidal Hecke eigenforms for Sp4(Z) equidistributes on
the Siegel modular variety as the weight tends to infinity.
H.–Huang–Li proof a case of our joint Gaussian moment conjecture.
Huang established holomorphic version.
Chatzakos–Cherubini–Lester–Risager obtained a logarithmic
improvement on Selberg’s longstanding bound for the error term in
the hyperbolic circle problem over Heegner points with varying
discriminants.
H. demonstrated that for 0 < p < 2, the ℓp-norm of some quadratic
forms in holomorphic Hecke cusp forms tends to zero asymptotically. 22 / 27



Analytic rank 1: Reg(E/Q(
√
d)) and Reg(E(d)/Q)

Leibniz rule for imaginary quadratic field

L′(
1

2
, E/Q(

√
d)) = L(

1

2
, E)L′(

1

2
, E(d)) + L′(

1

2
, E)L(

1

2
, E(d))

Gross–Zagier formulas

Let E non-CM.
Heegner condition: d < 0, d ≡ 1 (mod 4), and (dq ) = 1 for all q | N .

Then for r(E) + r(E(d)) = 1, we have

L′(
1

2
, E/Q(

√
d)) =

32π2 ∥fE∥2

|O×
Q(

√
d)
|2
√
|d| · deg ϕE

· ĥQ(
√
d)(PQ(

√
d)),

and for r(E) = 0, r(E(d)) = 1, we have

L′(
1

2
, E(d)) =

32π2 ∥fE∥2

|O×
Q(

√
d)
|2
√

|d| · deg ϕE

· ĥQ(Pd).
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Analytic rank 1: Reg(E/Q(
√
d)) and Reg(E(d)/Q)

H. (arXiv: 2507.20297)

For E non-CM, and d satisfies the Heegner condition.

Handling some log contribution to get one-sided central limit theory
for log Reg(E/Q(

√
d)) and log Reg(E(d)/Q).

Using Hölder’s inequality to show lots of d such that
Reg(E/Q(

√
d)) and Reg(E(d)/Q) have size ≫

√
|d|.

ΩE/Q(
√
d) = Ω+

E · Ω+
E(d) .

Order of imaginary period (Pal 2012)

For negative square-free (d, 2N) = 1,

Ω+
E(d) =

ũ(d)√
|d|

c∞(E(d))Ω−
E

with some ũ ∈ 1
2Z decided by E, and c∞(E(d)) denotes the number of

connected components of E(d)(R), which is either 1 or 2.
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Uniform boundedness theorem

H. (arXiv: 2507.20297)

For d satisfies the Heegner condition, assuming the BSD conjecture,
there exist two constants C1, C2 depending on E such that

C1 ≤ #X(E/Q(
√
d))

∏
v finite

cv(E/Q(
√
d)) ≤ C2.

Moreover, when L( 12 , E) ̸= 0, this result also applies to

#X(E(d)/Q)
∏

p prime cp(E
(d)/Q).
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Thank you !
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