Classification of exceptional hyperspherical data and their duals

Tang Guodong

National University of Singapore

August 12, 2025

Table of Contents

Hyperspherical data

The construction of the dual data

3 Classification of hyperspherical data in F_4

F: algebraically closed field of characteristic 0.

G: reductive group over F.

F: algebraically closed field of characteristic 0.

G: reductive group over F.

The philosophy of Ben-Zvi, Sakellaridis, Venkatesh [BSV24] duality:

Examples: Rankin-Selberg integral, Shalika model, Gan-Gross-Prasad, Trilinear model.

The BZSV quadruple $\Delta = (G, H, \iota, S)$ is the following data:

- 1. Reductive groups $H \subset G$.
- 2. An embedding $\iota: SL_2 \to G$ whose image commutes with H.
- 3. A symplectic *H*-repn. *S*.

The structure of hyperspherical data $\Delta = (G, H, \iota, S)$:

Here h is a semisimple element in $Lie(\iota(SL_2))$.

The structure of hyperspherical data $\Delta = (G, H, \iota, S)$:

- 1. h is the semisimple element in the \mathfrak{sl}_2 -triple.
- 2. $\mathfrak{g}(1) \subset \mathfrak{g}$ is the weight 1 subspace under the action Ad(h).
- 3. $S \oplus \mathfrak{g}(1)$ is a "coisotropic" and "anomaly-free" repn. of H and K.

The conjecture of BZSV

[BSV24] expects that the duality:

$$\Delta = (G,H,\iota,S) \ \longleftrightarrow \ \Delta^\vee = (G^\vee,G^\vee_\Delta,\iota^\vee_\Delta,S^\vee_\Delta)$$

preserves hypersphericality and anomaly-freeness.

Our work: Fix a group G, find all hyperspherical data and their duals.

Most of the duality statements are conjectural.

Approach 1 - Whittaker induction

[BSV24] reduces the dual of Δ to that of Δ_{red} :

$$\begin{split} \Delta = (\textit{G},\textit{H},\iota,\textit{S}) &\longleftarrow \Delta^{\vee} = (\textit{G}^{\vee},\textit{G}^{\vee}_{\Delta},\iota^{\vee}_{\Delta},\textit{S}^{\vee}_{\Delta}) \\ \downarrow & \uparrow \\ \Delta_{\textit{red}} = (\textit{L},\textit{H},1,\textit{S}) &\longleftarrow \Delta^{\vee}_{\textit{red}} = (\textit{L}^{\vee},\textit{L}^{\vee}_{\Delta_{\textit{red}}},\iota^{\vee}_{\Delta_{\textit{red}}},\textit{S}^{\vee}_{\Delta_{\textit{red}}}) \end{split}$$

- 1. $G_{\Delta}^{\vee} = \langle L_{\Delta_{red}}^{\vee}, SL_{2,\alpha} \mid \alpha \in \Delta_{G} \setminus \Delta_{L} \rangle$.
- 2. $\iota_{\Lambda}^{\vee} = \iota_{\Lambda}^{\vee}$.
- 3. S_{Δ}^{\vee} is generated by highest weights of $S_{\Delta_{red}}^{\vee}$ via the action of G_{Δ}^{\vee} .

Approach 1 - Whittaker induction

[BSV24] reduces the dual of Δ to that of Δ_{red} :

$$\Delta = (G, H, \iota, S) \longleftrightarrow \Delta^{\vee} = (G^{\vee}, G^{\vee}_{\Delta}, \iota^{\vee}_{\Delta}, S^{\vee}_{\Delta})$$

$$\downarrow \qquad \qquad \uparrow$$

$$\Delta_{red} = (L, H, 1, S) \longleftrightarrow \Delta^{\vee}_{red} = (L^{\vee}, L^{\vee}_{\Delta_{red}}, \iota^{\vee}_{\Delta_{red}}, S^{\vee}_{\Delta_{red}})$$

- 1. $G_{\Delta}^{\vee} = \langle L_{\Delta_{red}}^{\vee}, SL_{2,\alpha} \mid \alpha \in \Delta_{G} \setminus \Delta_{L} \rangle$.
- $2. \ \iota_{\Delta}^{\vee} = \iota_{\Delta_{red}}^{\vee}.$
- 3. S_{Δ}^{\vee} is generated by highest weights of $S_{\Delta_{red}}^{\vee}$ via the action of G_{Δ}^{\vee} .

Corollary:
$$\operatorname{\mathsf{rank}} G - \operatorname{\mathsf{rank}} L = \operatorname{\mathsf{rank}} G_\Delta^\vee - \operatorname{\mathsf{rank}} L_{\Delta_{red}}^\vee.$$

Approach 2 - Distinguished polarization

The paper [BSV24] gives an algorithm when Δ is distinguished polarized:

- 1. ι is even, i.e., $\mathfrak{g}(1) = 0$.
- 2. There is a Lagrangian *H*-stable decomposition $S = S^+ \oplus S^-$.

The dual data is based on the spherical G-variety:

$$X = (S^+ \times G)/(HU)^{diag}$$
.

Table 3 in [KS17] lists the dual group of $\Delta = (G, H, 1, 0)$, where $X = H \setminus G$.

Approach 3 - Strongly tempered data

[MWZ24] proposed the dual of "strongly tempered" hyperspherical data

$$\Delta^{\vee} = (G^{\vee}, G^{\vee}, \iota_{\Delta}^{\vee}, S_{\Delta}^{\vee}).$$

- 1. H, ι : inferred from [Kno06].
- 2. S: conjectured in an ad-hoc way.

Finding hyperspherical data

Determine Δ by ι, H, S successively.

- 1. ι : 16 nilpotent orbits of F_4 , see [CM93].
- 2. *H*: spherical subgroup of *L*, see [BP17].
- 3. $S \oplus \mathfrak{g}(1)$: coisotropic repn. of H, see [Kno06].

ι	$\circ\!$	$[\mathfrak{l},\mathfrak{l}]$	h	$\mathfrak{g}(1)\oplus S$	Δ^{\vee}
0	0 0 0 0	f ₄	f4	0	Trivial.
			50 9	0	
			$\mathfrak{sp}_6 \oplus \mathfrak{sl}_2$	0	Disconnected.
$\overline{A_1}$	1 0 0 0	sp ₆	sp ₆	\bigwedge_0^3	Not anomaly-free.
			\mathfrak{sp}_6	$\bigwedge_0^3 \oplus St$	
$\widetilde{A_1}$ $\widetilde{A_2}$	0 0 0 1	\$07	\mathfrak{so}_6	$\mathfrak{spin}_6 \oplus \mathfrak{spin}_6^ee$	
$\widetilde{A_2}$	0 0 0 2	\$07	\mathfrak{g}_2	0	
B_2	2 0 0 1	\mathfrak{sp}_4	$\mathfrak{sl}_2 \oplus \mathfrak{sl}_2$	St	Not anomaly-free.
B_3	2 2 0 0	\mathfrak{sl}_3	503	0	Disconnected.
C_3	1 0 1 2	\mathfrak{sl}_2	\mathfrak{sl}_2	$St \oplus St^{\vee}$	
F_4	2 2 2 2	0	0	0	Regular.

	\	Fv v1		(1)	
ι	$\stackrel{\longleftarrow}{\longrightarrow} \stackrel{\longleftarrow}{\longrightarrow}$	$[\mathfrak{l},\mathfrak{l}]$	h	$\mathfrak{g}(1)\oplus \mathcal{S}$	Δ^{\vee}
0	0 0 0 0	f ₄	f4	0	Trivial.
			50 9	0	$(\mathfrak{sl}_2, C_3, St \oplus St^\vee)$
			$\mathfrak{sp}_6 \oplus \mathfrak{sl}_2$	0	Disconnected.
$\overline{A_1}$	1 0 0 0	sp ₆	sp ₆	\bigwedge_0^3	Not anomaly-free.
			\mathfrak{sp}_6	$\bigwedge_0^3 \oplus St$	
$\widetilde{A_1}$ $\widetilde{A_2}$	0 0 0 1	\$07	\mathfrak{so}_6	$\mathfrak{spin}_6 \oplus \mathfrak{spin}_6^ee$	
$\widetilde{A_2}$	0 0 0 2	\$07	\mathfrak{g}_2	0	
B_2	2 0 0 1	sp ₄	$\mathfrak{sl}_2 \oplus \mathfrak{sl}_2$	St	Not anomaly-free.
B_3	2 2 0 0	\mathfrak{sl}_3	503	0	Disconnected.
C_3	1 0 1 2	\mathfrak{sl}_2	\mathfrak{sl}_2	$St \oplus St^{\vee}$	$(\mathfrak{so}_9,0,0)$
F_4	2 2 2 2	0	0	0	Regular.

ι	${\longrightarrow} {\longrightarrow}$	$[\mathfrak{l},\mathfrak{l}]$	ħ	$\mathfrak{g}(1)\oplus \mathcal{S}$	Δ^{\vee}
0	0 0 0 0	f ₄	f ₄	0	Trivial.
			50 9	0	$(\mathfrak{sl}_2, C_3, St \oplus St^\vee)$
			$\mathfrak{sp}_6 \oplus \mathfrak{sl}_2$	0	Disconnected.
A_1	1 0 0 0	sp ₆	sp ₆	$\sqrt{\frac{0}{3}}$	Not anomaly-free.
			\mathfrak{sp}_6	$\bigwedge_0^3 \oplus St$	
$\widetilde{A_1}$ $\widetilde{A_2}$	0 0 0 1	50 7	\mathfrak{so}_6	$\mathfrak{spin}_6 \oplus \mathfrak{spin}_6^ee$	
$\widetilde{A_2}$	0 0 0 2	50 7	\mathfrak{g}_2	0	Self dual.
B_2	2 0 0 1	\mathfrak{sp}_4	$\mathfrak{sl}_2 \oplus \mathfrak{sl}_2$	St	Not anomaly-free.
B_3	2 2 0 0	\mathfrak{sl}_3	503	0	Disconnected.
C_3	1 0 1 2	\mathfrak{sl}_2	\mathfrak{sl}_2	$St \oplus St^{\vee}$	$(\mathfrak{so}_9,0,0)$
F_4	2 2 2 2	0	0	0	Regular.

ι	~~~	$[\mathfrak{l},\mathfrak{l}]$	ħ	$\mathfrak{g}(1)\oplus \mathcal{S}$	Δ^{ee}
0	0 0 0 0	f ₄	f ₄	0	Trivial.
			50 9	0	$(\mathfrak{sl}_2, \mathit{C}_3, St \oplus St^\vee)$
			$\mathfrak{sp}_6 \oplus \mathfrak{sl}_2$	0	Disconnected.
A_1	1 0 0 0	\mathfrak{sp}_6	sp ₆	\bigwedge_0^3	Not anomaly-free.
			\mathfrak{sp}_6	$\bigwedge_0^3 \oplus St$	Self dual.
$\widetilde{A_1}$ $\widetilde{A_2}$	0 0 0 1	507	\mathfrak{so}_6	$\mathfrak{spin}_6 \oplus \mathfrak{spin}_6^ee$	Self dual.
$\widetilde{A_2}$	0 0 0 2	50 7	\mathfrak{g}_2	0	Self dual.
B_2	2 0 0 1	\mathfrak{sp}_4	$\mathfrak{sl}_2 \oplus \mathfrak{sl}_2$	St	Not anomaly-free.
B_3	2 2 0 0	\mathfrak{sl}_3	503	0	Disconnected.
C_3	1 0 1 2	\mathfrak{sl}_2	\mathfrak{sl}_2	$St \oplus St^{\vee}$	$(\mathfrak{so}_9,0,0)$
F_4	2 2 2 2	0	0	0	Regular.

Expectations of hyperspherical duality of F_4 :

$$\begin{array}{ccc} \mathsf{Trivial} & \longleftarrow & \mathsf{Regular} \\ (\mathfrak{f}_4, \mathfrak{f}_4, 0, 0) & \longleftarrow & (\mathfrak{f}_4, 0, F_4, 0) \\ \\ \mathcal{T}^*(SO_9 \backslash F_4) & \longleftarrow & \mathcal{T}^*(St_2) \\ (\mathfrak{f}_4, \mathfrak{so}_9, 0, 0) & \longleftarrow & (\mathfrak{f}_4, \mathfrak{sl}_2, C_3, \mathsf{St} \oplus \mathsf{St}^\vee) \end{array}$$

The rest are self-dual:

- 1. $(\mathfrak{f}_4,\mathfrak{sp}_6,A_1,\bigwedge_0^3\oplus \mathsf{St})$,
- 2. $(\mathfrak{f}_4,\mathfrak{so}_6,\widetilde{A_1},\mathfrak{spin}_6\oplus\mathfrak{spin}_6^\vee)$,
- 3. $(\mathfrak{f}_4,\mathfrak{g}_2,\ \widetilde{A_2},0)$.

References

- [BP17] Paolo Bravi and Guido Pezzini. The spherical systems of the wonderful reductive subgroups. 2017. arXiv: 1109.6777 [math.RT]. URL: https://arxiv.org/abs/1109.6777.
- [BSV24] David Ben-Zvi, Yiannis Sakellaridis, and Akshay Venkatesh. Relative Langlands Duality. 2024. arXiv: 2409.04677 [math.RT]. URL: https://arxiv.org/abs/2409.04677.
- [CM93] David H Collingwood and William M McGovern. Nilpotent orbits in semisimple Lie algebra: an introduction. CRC Press, 1993.
- [Kno06] Friedrich Knop. "Classification of multiplicity free symplectic representations". In: *Journal of Algebra* 301.2 (2006), pp. 531–553.
- [KS17] Friedrich Knop and Barbara Schalke. "The dual group of a spherical variety". In: Transactions of the Moscow Mathematical Society 78 (2017), pp. 187–216.
- [MWZ24] Zhengyu Mao, Chen Wan, and Lei Zhang. Strongly tempered hyperspherical Hamiltonian spaces. 2024. arXiv: 2405.17699 [math.NT]. URL: https://arxiv.org/abs/2405.17699.