Emission Trading Based on National Emission Pathways Calculated with the Regensburg Formula

Presentation at the CGET15 in Kopenhagen 25th September 2014

Prof. Dr. Manfred Sargl University of the Armed Forces, Munich

Contents

- 1. What the Regensburg Model is it good for
- 2. How it works
- 3. Some results of the model

Current Situation

- At the 2010 Cancun Conference, the 2°C target for global warming was agreed on.
- Global warming caused by humans is mainly due to CO₂ emissions.
- The IPCC estimates the <u>cumulative amount</u> of CO₂ emissions compatible with the 2°C target since pre industrial time to be about 2.900 Gt.

IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group to the Fifth Assessment Report. p. 27.

Agreement on a CO₂ Emission Budget

- The 2°C target without a CO₂ budget doesn't make any sense.
- An explicit agreement on a budget is not on the political agenda.
- The 2015 Conference in Paris is a good chance to negotiate a CO₂ budget, because the required investments in new infrastructure and products need time for preparation.

Options for Implementing a CO₂ Budget

- <u>CO₂ reduction offers</u> by countries: If the sum is higher than the budget (ambition gap), new offers are made.
- 2. <u>Worldwide CO₂ tax</u>, which is contiously adjusted until the budget is met (standard-price-approach).
- 3. Dividing up the CO_2 budget amoung countries.

Premise of the Regensburg Model

- The distribution of emission rights should result in national pathways.
- The national pathways should be fair and economically reasonable.
- Flexibility and cost efficency should be ensured by introducing emission trading between countries.

Two steps of the Regensburg Model

- 1. Global emission pathway Excel-Tool
 - A global emission pathway must be within the limitations of the global CO₂ budget.
 - We offer an Excel-tool to determine reasonable pathways.

2. National emission pathways - Regensburg Formula

- National emission pathways are derived from the global pathway.
- Starting point are the national emissions in the base year.
- Climate justice is reached gradually.
- Emission trading between countries is enabled.

Input Variables

Global emission pathway

- 1. Global emission budget (620 Gt).
- 2. Global emissions in base year (43 Gt).
- 3. Global emissions in target year (4.3 Gt).
- 4. Parameters to determine the trajectory.

National emission pathways

- 5. National emissions in base year.
- 6. National population size in target year.

Prof. Dr. Manfred Sargl

CO₂ **Budget 2020–2050**

		Gt	Source
	Total budget	2.900	IPCC report (probability 66%)
_	Emissions until 2011	1.890	IPCC report
-	Emissions 2012-2019	324	Own estimation (growth rate 1.5%)
_	Emissions after 2050	66	Own estimation (reduction rate 3%)
=	Budget 2020–2050	620	

Global Emission Pathways

The Regensburg Formula

National emission pathways

$$E_{t}^{i} = E_{t-1}^{i} + CR_{t-1} * (E_{t-1}^{i} - TE^{i})$$

Where

 E_t^i = national emissions of country *i* in year *t*

- TE^i = national emissions of country *i* in target year
- CR_t = change rate in year t

Change rates result from the global emission pathway

$$CR_{t-1} = \frac{E_t - E_{t-1}}{E_{t-1} - TE} = \frac{\text{amount by which emissions are reduced in year t}}{\text{amount of emissions which remains to be reduced}}$$

Where:

 E_t = global emissions in year tTE = global emissions in target year

Gradual Climate Justice

"One man - one emission right" is reached by

$$\frac{TE^{i}}{TE} = \frac{P_{ty}^{i}}{P_{ty}} \implies TE^{i} = P_{ty}^{i} * \frac{TE}{P_{ty}}$$

Where:

```
\frac{TE^{i}}{TE} = national share of emissions in target year (ty)
```

```
\frac{P_{ty}^{i}}{P_{ty}} = \text{national share of population in target year}
```

National Emission Pathways without Emission Trading (sc. 1)

National per capita Emissions without Emission Trading

Regensburg Formula with Emission Trading

National emission pathways

$$E_t^i = E_{t-1}^i + CR_{t-1} * (E_{t-1}^i - TE_{t-1}^i) + T_t^i$$

Target emissions

$$TE_t^i = TE_{t-1}^i + T_t^i$$

Where

 T_t^i = amount of certificates bought/sold by country i in year t

National per capita Emissions with Emission Trading

Required Political Decisions

- 1. Agreement on global CO₂ budget
- 2. Agreement on global emission pathway
- 3. Agreement on reaching climatic justice gradually
- 4. Sanctions for not keeping the national pathway
- 5. Regulations for emission trading

Thank you for your attention !

Download tool and more information: www.save-the-climate.info