Overreaction to Excise Taxes: the Case of Gasoline

Silvia Tiezzi Stefano F. Verde
University of Siena Climate Policy Research Unit (EUI)

15th GCET, Copenhagen, September 24-26, 2014

Motivation

- There is growing evidence that agents respond differently to tax changes and to price changes.
and that consumers overreact to gasoline tax changes as compared to gasoline price changes.
- The implication for Pigouvian taxes is that their effectiveness may be underestimated if price elasticities are considered instead of tax elasticities.

Motivation

- There is growing evidence that agents respond differently to tax changes and to price changes...
and that consumers overreact to gasoline tax changes as compared to gasoline price changes.
- The implication for Pigouvian taxes is that their effectiveness may be underestimated if price elasticities are considered instead of tax elasticities.

Motivation

- There is growing evidence that agents respond differently to tax changes and to price changes...
and that consumers overreact to gasoline tax changes as compared to gasoline price changes.
- The implication for Pigouvian taxes is that their effectiveness may be underestimated if price elasticities are considered instead of tax elasticities.

Motivation

- There is growing evidence that agents respond differently to tax changes and to price changes...
and that consumers overreact to gasoline tax changes as compared to gasoline price changes.
- The implication for Pigouvian taxes is that their effectiveness may be underestimated if price elasticities are considered instead of tax elasticities.

Literature

- Growing literature questioning the Public Finance assumption that agents respond to tax changes as they respond to price changes (Chetty, 2009; Finkelstein, 2009; Chetty et al. 2009).
- Empirical evidence that consumers overreact to gasoline tax changes as compared to gasoline price changes (Davis and Kilian, 2011; Li et al. 2012; Rivers and Schaufele, 2013).
- Different explanations for such differences:
- Rational behavior (Davis and Kilian, 2011; Li et al. 2012)
- Tax Aversion (McCaffery and Baron, 2006; Kalbekken et al. 2010 and 2011; Blaufus and Mohlmann, 2012)
- Visibility or "Salience" effect (Finkelstein, 2009, Chetty et al. 2009; Goldin and Homonoff, 2013)

Literature

- Growing literature questioning the Public Finance assumption that agents respond to tax changes as they respond to price changes (Chetty, 2009; Finkelstein, 2009; Chetty et al. 2009).
- Empirical evidence that consumers overreact to gasoline tax changes as compared to gasoline price changes (Davis and Kilian, 2011; Li et al. 2012; Rivers and Schaufele, 2013).
- Different explanations for such differences:

- Tax Aversion (McCaffery and Baron, 2006; Kalbekken et al.

2010 and 2011; Blaufus and Mohlmann, 2012)

- Visibility or "Salience" effect (Finkelstein, 2009, Chetty et al.

2009; Goldin and Homonoff, 2013)

Literature

- Growing literature questioning the Public Finance assumption that agents respond to tax changes as they respond to price changes (Chetty, 2009; Finkelstein, 2009; Chetty et al. 2009).
- Empirical evidence that consumers overreact to gasoline tax changes as compared to gasoline price changes (Davis and Kilian, 2011; Li et al. 2012; Rivers and Schaufele, 2013).
- Different explanations for such differences:

Literature

- Growing literature questioning the Public Finance assumption that agents respond to tax changes as they respond to price changes (Chetty, 2009; Finkelstein, 2009; Chetty et al. 2009).
- Empirical evidence that consumers overreact to gasoline tax changes as compared to gasoline price changes (Davis and Kilian, 2011; Li et al. 2012; Rivers and Schaufele, 2013).
- Different explanations for such differences:

Literature

- Growing literature questioning the Public Finance assumption that agents respond to tax changes as they respond to price changes (Chetty, 2009; Finkelstein, 2009; Chetty et al. 2009).
- Empirical evidence that consumers overreact to gasoline tax changes as compared to gasoline price changes (Davis and Kilian, 2011; Li et al. 2012; Rivers and Schaufele, 2013).
- Different explanations for such differences:
- Rational behavior (Davis and Kilian, 2011; Li et al. 2012)

2010 and 2011; Blaufus and Mohlmann, 2012)

2009; Goldin and Homonoff, 2013)

Literature

- Growing literature questioning the Public Finance assumption that agents respond to tax changes as they respond to price changes (Chetty, 2009; Finkelstein, 2009; Chetty et al. 2009).
- Empirical evidence that consumers overreact to gasoline tax changes as compared to gasoline price changes (Davis and Kilian, 2011; Li et al. 2012; Rivers and Schaufele, 2013).
- Different explanations for such differences:
- Rational behavior (Davis and Kilian, 2011; Li et al. 2012)
- Tax Aversion (McCaffery and Baron, 2006; Kalbekken et al. 2010 and 2011; Blaufus and Mohlmann, 2012)

Literature

- Growing literature questioning the Public Finance assumption that agents respond to tax changes as they respond to price changes (Chetty, 2009; Finkelstein, 2009; Chetty et al. 2009).
- Empirical evidence that consumers overreact to gasoline tax changes as compared to gasoline price changes (Davis and Kilian, 2011; Li et al. 2012; Rivers and Schaufele, 2013).
- Different explanations for such differences:
- Rational behavior (Davis and Kilian, 2011; Li et al. 2012)
- Tax Aversion (McCaffery and Baron, 2006; Kalbekken et al. 2010 and 2011; Blaufus and Mohlmann, 2012)
- Visibility or "Salience" effect (Finkelstein, 2009, Chetty et al. 2009; Goldin and Homonoff, 2013)

Our contribution

- We compute gasoline price elasticities and gasoline excise tax elasticities by estimating a complete system of demands for U.S. consumers between 2007 and 2009.
- We compare reactions to gasoline retail (tax inclusive) prices and reactions to information on gasoline excise taxes.
- We find that consumers overreact to tax changes as compared to price changes: the reaction to a tax change is around 8 times larger than the reaction to a price change of the same amount.
- We compute the degree of tax overreaction for a number of demographics accounting for household heterogeneity in the U.S.

Our contribution

- We compute gasoline price elasticities and gasoline excise tax elasticities by estimating a complete system of demands for U.S. consumers between 2007 and 2009.

We compare reactions to gasoline retail (tax inclusive) prices
and reactions to information on gasoline excise taxes.

- We find that consumers overreact to tax changes as compared to price changes: the reaction to a tax change is around 8 times larger than the reaction to a price change of the same amount.
- We compute the degree of tax overreaction for a number of demographics accounting for household heterogeneity in the U.S.

Our contribution

- We compute gasoline price elasticities and gasoline excise tax elasticities by estimating a complete system of demands for U.S. consumers between 2007 and 2009.
- We compare reactions to gasoline retail (tax inclusive) prices and reactions to information on gasoline excise taxes.
- We find that consumers overreact to tax changes as compared to price changes: the reaction to a tax change is around 8 times larger than the reaction to a price change of the same amount.
- We compute the degree of tax overreaction for a number of demographics accounting for household heterogeneity in the U.S.

Our contribution

- We compute gasoline price elasticities and gasoline excise tax elasticities by estimating a complete system of demands for U.S. consumers between 2007 and 2009.
- We compare reactions to gasoline retail (tax inclusive) prices and reactions to information on gasoline excise taxes.
- We find that consumers overreact to tax changes as compared to price changes: the reaction to a tax change is around 8 times larger than the reaction to a price change of the same amount.
- We compute the degree of tax overreaction for a number of demographics accounting for household heterogeneity in the U.S

Our contribution

- We compute gasoline price elasticities and gasoline excise tax elasticities by estimating a complete system of demands for U.S. consumers between 2007 and 2009.
- We compare reactions to gasoline retail (tax inclusive) prices and reactions to information on gasoline excise taxes.
- We find that consumers overreact to tax changes as compared to price changes: the reaction to a tax change is around 8 times larger than the reaction to a price change of the same amount.
- We compute the degree of tax overreaction for a number of demographics accounting for household heterogeneity in the U.S..

Outline

The Model

Data and Estimation

Conclusions

Implications

Outline

The Model

Data and Estimation

Conclusions

Implications

Outline

The Model

Data and Estimation

Conclusions

Implications

Outline

The Model

Data and Estimation

Conclusions

Implications

QAIDS Share Equations

Quadratic Almost Ideal (Banks et al. 1997) expenditure share equations are:

QAIDS Share Equations

Quadratic Almost Ideal (Banks et al. 1997) expenditure share equations are:

$$
\begin{equation*}
w_{i}^{h}=\alpha_{i}+\sum_{i} \sum_{k} \alpha_{i k} d_{k}^{h}+\sum_{j} c_{i j} \ln p_{j}+\beta_{i} \ln \left[\frac{y^{h}}{A(p)}\right]+\left[\frac{\lambda_{i}}{B(p)}\right]\left[\ln \left(\frac{y^{h}}{A(p)}\right)\right]^{2} \tag{1}
\end{equation*}
$$

- y^{h} total expenditure of household h
- $c_{i j}=\frac{1}{2}\left(c_{i j}^{*}+c_{j i}^{*}\right)=c_{i j}$
$>\alpha_{i k}$ coefficients of the translating intercepts $d^{h}=d_{1}^{h} \ldots d_{k}^{h}$ (households' types, households' location)
$-\ln A(p)$ translog and linear homogeneous price index
$\Rightarrow B(p)$ homogeneous of degree zero in p Cobb-Douglas price index
- $G(p)=\sum_{i} \lambda_{i} \ln p_{i}$ homogeneous of degree zero in p price index

QAIDS Share Equations

Quadratic Almost Ideal (Banks et al. 1997) expenditure share equations are:

$$
\begin{equation*}
w_{i}^{h}=\alpha_{i}+\sum_{i} \sum_{k} \alpha_{i k} d_{k}^{h}+\sum_{j} c_{i j} \ln p_{j}+\beta_{i} \ln \left[\frac{y^{h}}{A(p)}\right]+\left[\frac{\lambda_{i}}{B(p)}\right]\left[\ln \left(\frac{y^{h}}{A(p)}\right)\right]^{2} \tag{1}
\end{equation*}
$$

- y^{h} total expenditure of household h

QAIDS Share Equations

Quadratic Almost Ideal (Banks et al. 1997) expenditure share equations are:

$$
\begin{equation*}
w_{i}^{h}=\alpha_{i}+\sum_{i} \sum_{k} \alpha_{i k} d_{k}^{h}+\sum_{j} c_{i j} \ln p_{j}+\beta_{i} \ln \left[\frac{y^{h}}{A(p)}\right]+\left[\frac{\lambda_{i}}{B(p)}\right]\left[\ln \left(\frac{y^{h}}{A(p)}\right)\right]^{2} \tag{1}
\end{equation*}
$$

- y^{h} total expenditure of household h
- $c_{i j}=\frac{1}{2}\left(c_{i j}^{*}+c_{j i}^{*}\right)=c_{j i}$

QAIDS Share Equations

Quadratic Almost Ideal (Banks et al. 1997) expenditure share equations are:

$$
\begin{equation*}
w_{i}^{h}=\alpha_{i}+\sum_{i} \sum_{k} \alpha_{i k} d_{k}^{h}+\sum_{j} c_{i j} \ln p_{j}+\beta_{i} \ln \left[\frac{y^{h}}{A(p)}\right]+\left[\frac{\lambda_{i}}{B(p)}\right]\left[\ln \left(\frac{y^{h}}{A(p)}\right)\right]^{2} \tag{1}
\end{equation*}
$$

- y^{h} total expenditure of household h
- $c_{i j}=\frac{1}{2}\left(c_{i j}^{*}+c_{j i}^{*}\right)=c_{j i}$
- $\alpha_{i k}$ coefficients of the translating intercepts

QAIDS Share Equations

Quadratic Almost Ideal (Banks et al. 1997) expenditure share equations are:

$$
\begin{equation*}
w_{i}^{h}=\alpha_{i}+\sum_{i} \sum_{k} \alpha_{i k} d_{k}^{h}+\sum_{j} c_{i j} \ln p_{j}+\beta_{i} \ln \left[\frac{y^{h}}{A(p)}\right]+\left[\frac{\lambda_{i}}{B(p)}\right]\left[\ln \left(\frac{y^{h}}{A(p)}\right)\right]^{2} \tag{1}
\end{equation*}
$$

- y^{h} total expenditure of household h
- $c_{i j}=\frac{1}{2}\left(c_{i j}^{*}+c_{j i}^{*}\right)=c_{j i}$
- $\alpha_{i k}$ coefficients of the translating intercepts $d^{h}=d_{1}^{h} \ldots d_{k}^{h}$ (households' types, households' location)

QAIDS Share Equations

Quadratic Almost Ideal (Banks et al. 1997) expenditure share equations are:

$$
\begin{equation*}
w_{i}^{h}=\alpha_{i}+\sum_{i} \sum_{k} \alpha_{i k} d_{k}^{h}+\sum_{j} c_{i j} \ln p_{j}+\beta_{i} \ln \left[\frac{y^{h}}{A(p)}\right]+\left[\frac{\lambda_{i}}{B(p)}\right]\left[\ln \left(\frac{y^{h}}{A(p)}\right)\right]^{2} \tag{1}
\end{equation*}
$$

- y^{h} total expenditure of household h
- $c_{i j}=\frac{1}{2}\left(c_{i j}^{*}+c_{j i}^{*}\right)=c_{j i}$
- $\alpha_{i k}$ coefficients of the translating intercepts $d^{h}=d_{1}^{h} \ldots d_{k}^{h}$ (households' types, households' location)
- $\ln A(p)$ translog and linear homogeneous price index
- $G(p)=\sum_{i} \lambda_{i} \ln p_{i}$ homogeneous of degree zero in p price
index

QAIDS Share Equations

Quadratic Almost Ideal (Banks et al. 1997) expenditure share equations are:

$$
\begin{equation*}
w_{i}^{h}=\alpha_{i}+\sum_{i} \sum_{k} \alpha_{i k} d_{k}^{h}+\sum_{j} c_{i j} \ln p_{j}+\beta_{i} \ln \left[\frac{y^{h}}{A(p)}\right]+\left[\frac{\lambda_{i}}{B(p)}\right]\left[\ln \left(\frac{y^{h}}{A(p)}\right)\right]^{2} \tag{1}
\end{equation*}
$$

- y^{h} total expenditure of household h
- $c_{i j}=\frac{1}{2}\left(c_{i j}^{*}+c_{j i}^{*}\right)=c_{j i}$
- $\alpha_{i k}$ coefficients of the translating intercepts $d^{h}=d_{1}^{h} \ldots d_{k}^{h}$ (households' types, households' location)
- $\ln A(p)$ translog and linear homogeneous price index
- $B(p)$ homogeneous of degree zero in p Cobb-Douglas price index
- $G(p)=\sum_{i} \lambda_{i} \ln p_{i}$ homogeneous of degree zero in p price index

QAIDS Share Equations

Quadratic Almost Ideal (Banks et al. 1997) expenditure share equations are:

$$
\begin{equation*}
w_{i}^{h}=\alpha_{i}+\sum_{i} \sum_{k} \alpha_{i k} d_{k}^{h}+\sum_{j} c_{i j} \ln p_{j}+\beta_{i} \ln \left[\frac{y^{h}}{A(p)}\right]+\left[\frac{\lambda_{i}}{B(p)}\right]\left[\ln \left(\frac{y^{h}}{A(p)}\right)\right]^{2} \tag{1}
\end{equation*}
$$

- y^{h} total expenditure of household h
- $c_{i j}=\frac{1}{2}\left(c_{i j}^{*}+c_{j i}^{*}\right)=c_{j i}$
- $\alpha_{i k}$ coefficients of the translating intercepts $d^{h}=d_{1}^{h} \ldots d_{k}^{h}$ (households' types, households' location)
- $\operatorname{In} A(p)$ translog and linear homogeneous price index
- $B(p)$ homogeneous of degree zero in p Cobb-Douglas price index
- $G(p)=\sum_{i} \lambda_{i} \ln p_{i}$ homogeneous of degree zero in p price index

Incorporating Information on Taxes into the Demand Functions

```
- We include excise taxes on gasoline among the explanatory
variables of the share equations using the translating
technique (Pollak and Wales, 1992; Lewbel, 1985)
- This technique has often been used to analyze the effect of
information (Jensen et al., 1992; Chern et al., 1995),
innovation (Moro et al., 1996) and advertising (Duffy, 1995;
Brown and Lee, 1997), in demand systems.
```


Incorporating Information on Taxes into the Demand Functions

- We include excise taxes on gasoline among the explanatory variables of the share equations using the translating technique (Pollak and Wales, 1992; Lewbel, 1985)

Incorporating Information on Taxes into the Demand Functions

- We include excise taxes on gasoline among the explanatory variables of the share equations using the translating technique (Pollak and Wales, 1992; Lewbel, 1985)
- This technique has often been used to analyze the effect of information (Jensen et al., 1992; Chern et al., 1995), innovation (Moro et al., 1996) and advertising (Duffy, 1995; Brown and Lee, 1997), in demand systems.

Tax Overreaction

Given the retail price of gasoline $q=p+t^{e}$
the degree of overreaction θ is measured by the ratio of the compensated (Hicksian) elasticities of demand to t^{e} and q, each multiplied by the respective percentage change

$$
\begin{equation*}
\theta=\frac{\left(\frac{\delta X}{\delta t^{e}} \times \frac{t^{e}}{X}\right) \times \frac{\Delta t^{e}}{t^{e}}}{\left(\frac{\delta X}{\delta q} \times \frac{q}{X}\right) \times \frac{\Delta q}{q}}=\frac{\varepsilon_{x, t^{e}} \times \frac{\Delta t^{e}}{t^{e}}}{\varepsilon_{x, q} \times \frac{\Delta q}{q}} \tag{2}
\end{equation*}
$$

A given value of θ suggests how strongly consumers react to a given tax change compared to a price change of the same amount.

Tax Overreaction

Given the retail price of gasoline $q=p+t^{e}$
the degree of overreaction θ is measured by the ratio of the compensated (Hicksian) elasticities of demand to t^{e} and q, each multiplied by the respective percentage change

A given value of θ suggests how strongly consumers react to a given tax change compared to a price change of the same amount.

Tax Overreaction

Given the retail price of gasoline $q=p+t^{e}$ the degree of overreaction θ is measured by the ratio of the compensated (Hicksian) elasticities of demand to t^{e} and q, each multiplied by the respective percentage change

A given value of θ suggests how strongly consumers react to a given tax change compared to a price change of the same amount.

Tax Overreaction

Given the retail price of gasoline $q=p+t^{e}$
the degree of overreaction θ is measured by the ratio of the compensated (Hicksian) elasticities of demand to t^{e} and q, each multiplied by the respective percentage change

$$
\begin{equation*}
\theta=\frac{\left(\frac{\delta X}{\delta t^{e}} \times \frac{t^{e}}{X}\right) \times \frac{\Delta t^{e}}{t^{e}}}{\left(\frac{\delta X}{\delta q} \times \frac{q}{X}\right) \times \frac{\Delta q}{q}}=\frac{\varepsilon_{X, t^{e}} \times \frac{\Delta t^{e}}{t^{e}}}{\varepsilon_{X, q} \times \frac{\Delta q}{q}} \tag{2}
\end{equation*}
$$

A given value of θ suggests how strongly consumers react to a given tax change compared to a price change of the same amount.

Tax Overreaction

Given the retail price of gasoline $q=p+t^{e}$
the degree of overreaction θ is measured by the ratio of the compensated (Hicksian) elasticities of demand to t^{e} and q, each multiplied by the respective percentage change

$$
\begin{equation*}
\theta=\frac{\left(\frac{\delta X}{\delta t^{e}} \times \frac{t^{e}}{X}\right) \times \frac{\Delta t^{e}}{t^{e}}}{\left(\frac{\delta X}{\delta q} \times \frac{q}{X}\right) \times \frac{\Delta q}{q}}=\frac{\varepsilon_{X, t^{e}} \times \frac{\Delta t^{e}}{t^{e}}}{\varepsilon_{X, q} \times \frac{\Delta q}{q}} \tag{2}
\end{equation*}
$$

A given value of θ suggests how strongly consumers react to a given tax change compared to a price change of the same amount.

Data sources

Expenditure data

- U.S. Consumer Expenditure Survey (CEX) waves 2007, 2008 and 2009 supplied by the Bureau of Labour Statistics (BLS).
- The sample spans 39 months, from January 2007 to March 2010, and 20 Metropolitan Statistical Areas (MSA).
- Our system of demands considers current expenditures (ignoring durables and occasional purchases) on:

1 Home food
2 Electricity
3 Natural Gas
4 Other Home Fuels
5 Motor Fuels (gasoline)
6 Public Transports
7 All Other Expenditures

Data sources

Expenditure data

> U.S. Consumer Expenditure Survey (CEX) waves 2007, 2008 and 2009 supplied by the Bureau of Labour Statistics (BLS).

- The sample spans 39 months, from January 2007 to March 2010, and 20 Metropolitan Statistical Areas (MSA).
- Our system of demands considers current expenditures (ignoring durables and occasional purchases) on:

1 Home food
2 Electricity
3 Natural Gas
4 Other Home Fuels
5 Motor Fuels (gasoline)
6 Public Transports
7 All Other Expenditures

Data sources

Expenditure data

- U.S. Consumer Expenditure Survey (CEX) waves 2007, 2008 and 2009 supplied by the Bureau of Labour Statistics (BLS).
\square
- The sample spans 39 months, from January 2007 to March 2010, and 20 Metropolitan Statistical Areas (MSA)
- Our system of demands considers current expenditures (ignoring durables and occasional purchases) on:

```
1 Home food
```

2 Electricity
3 Natural Gas
4 Other Home Fuels
5 Motor Fuels (gasoline)
6 Public Transports
7 All Other Expenditures

Data sources

Expenditure data

- U.S. Consumer Expenditure Survey (CEX) waves 2007, 2008 and 2009 supplied by the Bureau of Labour Statistics (BLS).
- The sample spans 39 months, from January 2007 to March 2010, and 20 Metropolitan Statistical Areas (MSA).
- Our system of demands considers current expenditures (ignoring durables and occasional purchases) on: 1 Home food 2 Electricity 3 Natural Gas 4 Other Home Fuels 5 Motor Fuels (gasoline) 6 Public Transports 7 All Other Expenditures

Data sources

Expenditure data

- U.S. Consumer Expenditure Survey (CEX) waves 2007, 2008 and 2009 supplied by the Bureau of Labour Statistics (BLS).
- The sample spans 39 months, from January 2007 to March 2010, and 20 Metropolitan Statistical Areas (MSA).
- Our system of demands considers current expenditures (ignoring durables and occasional purchases) on:

Data sources

Expenditure data

- U.S. Consumer Expenditure Survey (CEX) waves 2007, 2008 and 2009 supplied by the Bureau of Labour Statistics (BLS).
- The sample spans 39 months, from January 2007 to March 2010, and 20 Metropolitan Statistical Areas (MSA).
- Our system of demands considers current expenditures (ignoring durables and occasional purchases) on:

1 Home food

Data sources

Expenditure data

- U.S. Consumer Expenditure Survey (CEX) waves 2007, 2008 and 2009 supplied by the Bureau of Labour Statistics (BLS).
- The sample spans 39 months, from January 2007 to March 2010, and 20 Metropolitan Statistical Areas (MSA).
- Our system of demands considers current expenditures (ignoring durables and occasional purchases) on:

1 Home food
2 Electricity

Data sources

Expenditure data

- U.S. Consumer Expenditure Survey (CEX) waves 2007, 2008 and 2009 supplied by the Bureau of Labour Statistics (BLS).
- The sample spans 39 months, from January 2007 to March 2010, and 20 Metropolitan Statistical Areas (MSA).
- Our system of demands considers current expenditures (ignoring durables and occasional purchases) on:

1 Home food
2 Electricity
3 Natural Gas
4 Other Home Fuels
5 Motor Fuels (gasoline)
6 Public Transports
7 All Other Expenditures

Data sources

Expenditure data

- U.S. Consumer Expenditure Survey (CEX) waves 2007, 2008 and 2009 supplied by the Bureau of Labour Statistics (BLS).
- The sample spans 39 months, from January 2007 to March 2010, and 20 Metropolitan Statistical Areas (MSA).
- Our system of demands considers current expenditures (ignoring durables and occasional purchases) on:

1 Home food
2 Electricity
3 Natural Gas
4 Other Home Fuels
5 Motor Fuels (gasoline)
6 Public Transports
7 All Other Expenditures

Data sources

Expenditure data

- U.S. Consumer Expenditure Survey (CEX) waves 2007, 2008 and 2009 supplied by the Bureau of Labour Statistics (BLS).
- The sample spans 39 months, from January 2007 to March 2010, and 20 Metropolitan Statistical Areas (MSA).
- Our system of demands considers current expenditures (ignoring durables and occasional purchases) on:

1 Home food
2 Electricity
3 Natural Gas
4 Other Home Fuels
5 Motor Fuels (gasoline)
6 Public Transports
7 All Other Expenditures

Data sources

Expenditure data

- U.S. Consumer Expenditure Survey (CEX) waves 2007, 2008 and 2009 supplied by the Bureau of Labour Statistics (BLS).
- The sample spans 39 months, from January 2007 to March 2010, and 20 Metropolitan Statistical Areas (MSA).
- Our system of demands considers current expenditures (ignoring durables and occasional purchases) on:

1 Home food
2 Electricity
3 Natural Gas
4 Other Home Fuels
5 Motor Fuels (gasoline)
6 Public Transports

Data sources

Expenditure data

- U.S. Consumer Expenditure Survey (CEX) waves 2007, 2008 and 2009 supplied by the Bureau of Labour Statistics (BLS).
- The sample spans 39 months, from January 2007 to March 2010, and 20 Metropolitan Statistical Areas (MSA).
- Our system of demands considers current expenditures (ignoring durables and occasional purchases) on:

1 Home food
2 Electricity
3 Natural Gas
4 Other Home Fuels
5 Motor Fuels (gasoline)
6 Public Transports
7 All Other Expenditures

Expenditure and demographic data

Table 1-Summary statistics of budget shares

Variable	Obs.(\#)	Mean	Standard deviation Coeff. of variation	Min	Max	Zeros	
Food at home	43,457	22.8%	13.7%	0.60	0.0%	100.0%	0.9%
Electricity	43,457	5.8%	5.3%	0.92	0.0%	100.0%	8.5%
Natural gas	43,457	2.9%	4.3%	1.50	0.0%	63.4%	38.5%
Other home fuels	43,457	0.7%	3.1%	4.59	0.0%	72.8%	91.2%
Motor fuels	43,457	9.1%	7.7%	0.84	0.0%	100.0%	12.9%
Public transport	43,457	2.0%	5.4%	2.63	0.0%	81.4%	73.4%
All other expenditures	43,457	56.7%	17.5%	0.31	0.0%	100.0%	0.1%

Table 2 - Summary statistics of socio-demographics and total current expenditure

Variable	Obs.(\#)	Mean	Standard deviation	Min	Max
Single	43,457	0.28	0.45	0	1
H\&W	43,457	0.19	0.40	0	1
H\&W, child (ren) <6	43,457	0.05	0.21	0	1
H\&W, child(ren)<18	43,457	0.14	0.34	0	1
H\&W, child(ren) >17	43,457	0.08	0.27	0	1
Other households	43,457	0.26	0.44	0	1
Northeast	43,457	0.31	0.46	0	1
Midwest	43,457	0.20	0.40	0	1
South	43,457	0.24	0.43	0	1
West	43,457	0.26	0.44	0	1
Composition income earners	43,457	0.23	0.42	0	1
Education reference person*	43,457	13.41	1.98	0	17
Number of cars	43,457	0.91	0.89	0	15
Total current expenditure, \$	43,457	7,178.8	7,298.6	35.0	321,316.0

[^0]
Data sources

Price and Tax data

- We use monthly price indices varying by MSA, supplied by the Bureau of Labour Statistics (BLS).
- Three layers of taxes apply to U.S. consumption of gasoline and auto diesel: federal taxes, State taxes and local taxes.
- The federal tax rate on gasoline is 18.4 cents per gallon and has not changed since 2006.
- We use monthly rates of State taxes published by the Federation of Tax Administrators (FTA).
- Local taxes are not considered.

Data sources

Price and Tax data

- We use monthly price indices varying by MSA, supplied by the Bureau of Labour Statistics (BLS).
- Three layers of taxes apply to U.S. consumption of gasoline and auto diesel: federal taxes, State taxes and local taxes.
- The federal tax rate on gasoline is 18.4 cents per gallon and has not changed since 2006.
- We use monthly rates of State taxes published by the Federation of Tax Administrators (FTA).
- Local taxes are not considered.

Data sources

Price and Tax data

- We use monthly price indices varying by MSA, supplied by the Bureau of Labour Statistics (BLS).
- Three layers of taxes apply to U.S. consumption of gasoline and auto diesel: federal taxes, State taxes and local taxes.
- The federal tax rate on gasoline is 18.4 cents per gallon and has not changed since 2006.
- We use monthly rates of State taxes published by the Federation of Tax Administrators (FTA)
- Local taxes are not considered.

Data sources

Price and Tax data

- We use monthly price indices varying by MSA, supplied by the Bureau of Labour Statistics (BLS).
- Three layers of taxes apply to U.S. consumption of gasoline and auto diesel: federal taxes, State taxes and local taxes.
- The federal tax rate on gasoline is 18.4 cents per gallon and has not changed since 2006
- We use monthly rates of State taxes published by the Federation of Tax Administrators (FTA)
- Local taxes are not considered.

Data sources

Price and Tax data

- We use monthly price indices varying by MSA, supplied by the Bureau of Labour Statistics (BLS).
- Three layers of taxes apply to U.S. consumption of gasoline and auto diesel: federal taxes, State taxes and local taxes.
- The federal tax rate on gasoline is 18.4 cents per gallon and has not changed since 2006.
- We use monthly rates of State taxes published by the Federation of Tax Administrators (FTA).
- Local taxes are not considered.

Data sources

Price and Tax data

- We use monthly price indices varying by MSA, supplied by the Bureau of Labour Statistics (BLS).
- Three layers of taxes apply to U.S. consumption of gasoline and auto diesel: federal taxes, State taxes and local taxes.
- The federal tax rate on gasoline is 18.4 cents per gallon and has not changed since 2006.
- We use monthly rates of State taxes published by the Federation of Tax Administrators (FTA).
- Local taxes are not considered.

Data sources

Price and Tax data

- We use monthly price indices varying by MSA, supplied by the Bureau of Labour Statistics (BLS).
- Three layers of taxes apply to U.S. consumption of gasoline and auto diesel: federal taxes, State taxes and local taxes.
- The federal tax rate on gasoline is 18.4 cents per gallon and has not changed since 2006.
- We use monthly rates of State taxes published by the Federation of Tax Administrators (FTA).
- Local taxes are not considered.

Price and Tax data

Table A3 - Price indices ($1982-84=100$)

Index	Obs.(\#)	Mean	St. deviation	Min	Max
Food at home	43,457	208.40	24.61	124.23	236.79
Electricity	43,457	195.16	42.81	102.03	311.82
Natural gas	43,457	214.95	38.67	112.18	371.55
Other home fuels	43,457	273.30	44.96	228.03	384.30
Motor fuels	43,457	233.48	49.92	143.60	453.11
Public transport	43,457	237.77	10.85	219.86	267.72
All other expenditures	43,457	177.12	17.11	123.00	222.55

Note: All indices are Laspeyres price indices, for all urban consumers, not seasonally adjusted.

Figure A2-Distribution of gasoline taxes

Two-Step Estimation

Two-step estimator (Shonkwiler and Yen, 1999):

1) probit estimation in the first step
2) a selectivity-augmented equation system estimated with maximum likelihood in the second step.

The dependent variable in the first-step probits is the binary outcome defined by the expenditure in each good.

Exogenous variables used in the first-step probits are:
total expenditure
dummies indicating household location and household type
the level of education of the household reference person
a dummy for the presence of two income earners in the
household
Since the proportion of consuming households for Food exceeds 95%, probit is estimated only for the remaining commodities.

Two-Step Estimation

Two-step estimator (Shonkwiler and Yen, 1999):

1) probit estimation in the first step
2) a selectivity-augmented equation system estimated with maximum likelihood in the second step.

The dependent variable in the first-step probits is the binary outcome defined by the expenditure in each good.

Exogenous variables used in the first-step probits are:
total expenditure
dummies indicating household location and household type
the level of education of the household reference person
a dummy for the presence of two income earners in the
household
Since the proportion of consuming households for Food exceeds
95%, probit is estimated only for the remaining commodities.

Two-Step Estimation

Two-step estimator (Shonkwiler and Yen, 1999):

1) probit estimation in the first step
2) a selectivity-augmented equation system estimated with maximum likelihood in the second step.

The dependent variable in the first-step probits is the binary outcome defined by the expenditure in each good.

Exogenous variables used in the first-step probits are:
total expenditure
dummies indicating household location and household type the level of education of the household reference person
a dummy for the presence of two income earners in the household

Since the proportion of consuming households for Food exceeds 95%, probit is estimated only for the remaining commodities.

Two-Step Estimation

Two-step estimator (Shonkwiler and Yen, 1999):

1) probit estimation in the first step
2) a selectivity-augmented equation system estimated with maximum likelihood in the second step.

The dependent variable in the first-step probits is the binary outcome defined by the expenditure in each good.

Exogenous variables used in the first-step probits are total exnenditure
dummies indicating household location and household type the level of education of the household reference person a dummy for the presence of two income earners in the household

Two-Step Estimation

Two-step estimator (Shonkwiler and Yen, 1999):

1) probit estimation in the first step
2) a selectivity-augmented equation system estimated with maximum likelihood in the second step.

The dependent variable in the first-step probits is the binary outcome defined by the expenditure in each good.

Exogenous variables used in the first-step probits are:
total expenditure
dummies indicating household location and household type the level of education of the household reference person a dummy for the presence of two income earners in the household

Two-Step Estimation

Two-step estimator (Shonkwiler and Yen, 1999):

1) probit estimation in the first step
2) a selectivity-augmented equation system estimated with maximum likelihood in the second step.

The dependent variable in the first-step probits is the binary outcome defined by the expenditure in each good.

Exogenous variables used in the first-step probits are:

- total expenditure
dummies indicating household location and household type the level of education of the household reference person a dummy for the presence of two income earners in the household

Two-Step Estimation

Two-step estimator (Shonkwiler and Yen, 1999):

1) probit estimation in the first step
2) a selectivity-augmented equation system estimated with maximum likelihood in the second step.

The dependent variable in the first-step probits is the binary outcome defined by the expenditure in each good.

Exogenous variables used in the first-step probits are:

- total expenditure
- dummies indicating household location and household type

Since the proportion of consuming households for Food exceeds 95%, probit is estimated only for the remaining commodities.

Two-Step Estimation

Two-step estimator (Shonkwiler and Yen, 1999):

1) probit estimation in the first step
2) a selectivity-augmented equation system estimated with maximum likelihood in the second step.

The dependent variable in the first-step probits is the binary outcome defined by the expenditure in each good.

Exogenous variables used in the first-step probits are:

- total expenditure
- dummies indicating household location and household type
- the level of education of the household reference person
a dummy for the presence of two income earners in the

Two-Step Estimation

Two-step estimator (Shonkwiler and Yen, 1999):

1) probit estimation in the first step
2) a selectivity-augmented equation system estimated with maximum likelihood in the second step.

The dependent variable in the first-step probits is the binary outcome defined by the expenditure in each good.

Exogenous variables used in the first-step probits are:

- total expenditure
- dummies indicating household location and household type
- the level of education of the household reference person
- a dummy for the presence of two income earners in the household
Since the proportion of consuming households for Food exceeds
95%, probit is estimated only for the remaining commodities.

Two-Step Estimation

Two-step estimator (Shonkwiler and Yen, 1999):

1) probit estimation in the first step
2) a selectivity-augmented equation system estimated with maximum likelihood in the second step.

The dependent variable in the first-step probits is the binary outcome defined by the expenditure in each good.

Exogenous variables used in the first-step probits are:

- total expenditure
- dummies indicating household location and household type
- the level of education of the household reference person
- a dummy for the presence of two income earners in the household
Since the proportion of consuming households for Food exceeds 95%, probit is estimated only for the remaining commodities.

Second-step QAID estimates

Table 3 - Second-step QAID estimates

Coefficient	$i=1$ Food	$i=2$ Electricity	$\begin{aligned} & \begin{array}{l} i=3 \\ \text { Nat. Gas } \end{array} \end{aligned}$	$\begin{aligned} & \mathrm{i}=4 \\ & \text { Oth. } \mathrm{F} . \end{aligned}$	$i=5$ Gasoline	$i=6$ Pb. Tr.
α_{i}	0.200	0.054	0.036	0.647	0.106	0.119
	0.001	0.001	0.006	0.031	0.002	0.025
β_{i}	-0.109	-0.029	-0.019	-0.044	-0.039	0.032
	O.001	0.001	0.001	0.001	0.001	0.006
λ_{i}	-0.003	0.001	-0.004	-0.041	-0.013	-0.007
	0.001	O. 0.00	O. 0000	0.002	0.001	0.001
$\alpha_{\text {i,NE }}$	0.030	0.012	-0.006	-0.083	0.009	-0.033
	0.002	0.001	0.004	0.015	0.001	0.005
$\alpha_{\text {i, So }}$	0.017	0.039	-0.027	-0.021	0.013	0.012
	0.002	0.001	0.005	0.008	0.001	0.004
$\alpha_{\text {i, WE }}$	0.041	-0.005	-0.038	-0.002	0.018	-0.013
	0.002	0.001	0.001	0.009	0.001	0.004
$\alpha_{i, \mathrm{NCAR}}$	-0.011	0.001	0.001	0.008	0.011	-0.007
	0.001	0.000	0.000	0.001	0.001	0.001
$\alpha_{\text {i, Twoe }}$	-0.001	-0.001	-0.002	-0.021	0.011	0.002
	0.001	0.000	0.001	0.003	0.001	0.003
$\alpha_{i, \mathrm{~N} 1}$	-0.056	-0.009	0.001	0.107	0.003	-0.030
	0.002	0.001	0.002	0.007	0.001	0.005
$\alpha_{i, N 3}$	0.028	-0.001	-0.002	0.035	0.011	-0.014
	0.003	0.001	0.001	0.006	0.002	0.004
$\alpha_{i, \mathrm{~N} 4}$	0.053	0.007	0.001	0.024	0.018	0.002
	0.002	0.001	0.001	0.004	0.001	0.004
$\alpha_{i, \text { NS }}$	0.048	0.008	-0.000	0.022	0.022	-0.0.011
	0.002	0.001	0.001	0.001	0.001	0.004
$\alpha_{i, N 6}$	0.024	0.003	0.001	0.039	0.016	-0.026
	0.001	0.001	0.001	0.001	0.001	0.004
$\alpha_{\text {i, EDUC }}$	-0.005	-0.002	-0.001	-0.001	-0.004	0.001
	0.000	0.000	0.000	0.001	0.000	0.001
$\alpha_{\text {i, TAX }}$	-0.030	0.017	-0.013	0.144	-0.061	0.029
	0.005	0.002	0.003	0.009	0.004	0.007
LogLikelihood	392.200					
\mathbf{R}^{2}	0.34	0.18	0.11	0.07	0.15	0.04
N obs	43,256					

Estimated Budget Shares, Expenditure and Hicksian Elasticities

Table 4 - Estimated Budget Shares, Expenditure and Compensated Elasticities

	$\begin{aligned} & \mathrm{j}=1 \\ & \text { Food } \end{aligned}$	$\mathrm{j}=2$ Electricity	$\mathrm{j}=3$ Nat. Gas	$\begin{aligned} & \mathrm{j}=4 \\ & \text { Oth. Fuels } \end{aligned}$	$\mathrm{j}=5$ Gasoline	$\mathrm{j}=6$ Public Transport	$\mathrm{j}=7$ Other Goods
w_{j}	0.228	0.058	0.029	0.007	0.090	0.021	0.567
e_{j}	0.871	1.260	0.712	2.882	0.405	1.389	1.098
	0.021	0.033	0.060	0.151	0.032	0.117	0.010
$\mathrm{e}^{\mathrm{C}}{ }_{1 \mathrm{j}}$	-0.844	-0.050	0.104	0.005	-0.019	0.512	0.629
	0.040	0.013	0.013	0.025	0.018	0.034	0.050
$\mathrm{e}^{\mathrm{C}}{ }_{2 \mathrm{j}}$	-0.072	-0.855	-0.019	0.054	-0.147	-0.026	1.798
	0.047	0.027	0.021	0.042	0.029	0.065	0.075
$\mathrm{e}^{\mathrm{C}}{ }^{\text {j }}$	0.528	-0.041	-0.296	0.367	-0.289	0.647	-0.848
	0.067	0.029	0.040	0.056	0.036	0.088	0.099
$\mathrm{e}^{\mathrm{C}}{ }_{4 j}$	0.155	0.063	0.224	-0.734	0.131	0.248	2.037
	0.098	0.038	0.035	0.142	0.049	0.115	0.251
$\mathrm{e}^{\mathrm{C}}{ }_{5 j}$	-0.167	-0.149	-0.151	-0.008	-0.502	-0.032	0.717
	-0.041	0.018	0.017	0.033	0.027	0.044	0.067
$\mathrm{e}^{\mathrm{c}}{ }_{6 j}$	1.545	-0.026	0.388	0.269	0.018	-0.331	-1.175
	0.105	0.054	0.056	0.111	0.058	0.212	0.194
$\mathrm{e}^{\mathrm{C}} \mathrm{Tj}$	0.291	0.134	-0.018	-0.029	0.115	-0.223	-0.393
	0.018	0.007	0.007	0.013	0.011	0.017	0.011

[^1]
Ratio of Elasticities by region

Ratio of Elasticities by number of cars

Degree of Overreaction

Degree of overreaction by region

Regions	Theta
Sample mean	8.0
Northeast	10.0
Northwest	8.0
South	7.2
West	7.5

$\theta=8$ means that a 13.5 cents increase in gasoline excise taxes is eight times more effective at reducing gasoline demand than a 13.5 cents increase in gasoline final price.

Degree of Overreaction

Degree of overreaction by region

Regions	Theta
Sample mean	8.0
Northeast	10.0
Northwest	8.0
South	7.2
West	7.5

$\theta=8$ means that a 13.5 cents increase in gasoline excise taxes is eight times more effective at reducing gasoline demand than a 13.5 cents increase in gasoline final price.

Degree of Overreaction

Degree of overreaction by region

Regions	Theta
Sample mean	8.0
Northeast	10.0
Northwest	8.0
South	7.2
West	7.5

$\theta=8$ means that a 13.5 cents increase in gasoline excise taxes is eight times more effective at reducing gasoline demand than a 13.5 cents increase in gasoline final price.

Conclusions

- We compare reactions to gasoline price changes and to excise taxes' changes.
- Households overreact to gasoline taxes as compared to gasoline prices $(\theta=8$ at the sample mean).

The Northeast exhibits the lowest price elasticity, the highest tax elasticity and the highest degree of overreaction among U.S. regions.

The ratio of elasticities appears to be negatively related to the number of cars: the more the cars owned by the household, the lower the tax elasticity relative to the price elasticity.

Conclusions

- We compare reactions to gasoline price changes and to excise taxes' changes.
- Households overreact to gasoline taxes as compared to gasoline prices ($\theta=8$ at the sample mean).

The Northeast exhibits the lowest price elasticity, the highest tax elasticity and the highest degree of overreaction among U.S. regions.

The ratio of elasticities appears to be negatively related to the number of cars: the more the cars owned by the household, the lower the tax elasticity relative to the price elasticity.

Conclusions

- We compare reactions to gasoline price changes and to excise taxes' changes.
- Households overreact to gasoline taxes as compared to gasoline prices ($\theta=8$ at the sample mean).

$$
\begin{aligned}
& \text { The Northeast exhibits the lowest price elasticity, the highest } \\
& \text { tax elasticity and the highest degree of overreaction among } \\
& \text { U.S. regions. } \\
& \text { The ratio of elasticities appears to be negatively related to the } \\
& \text { number of cars: the more the cars owned by the household, } \\
& \text { the lower the tax elasticity relative to the price elasticity. }
\end{aligned}
$$

Conclusions

- We compare reactions to gasoline price changes and to excise taxes' changes.
- Households overreact to gasoline taxes as compared to gasoline prices ($\theta=8$ at the sample mean).
- The Northeast exhibits the lowest price elasticity, the highest tax elasticity and the highest degree of overreaction among U.S. regions.

The ratio of elasticities appears to be negatively related to the
 the lower the tax elasticity relative to the price elasticity.

Conclusions

- We compare reactions to gasoline price changes and to excise taxes' changes.
- Households overreact to gasoline taxes as compared to gasoline prices ($\theta=8$ at the sample mean).
- The Northeast exhibits the lowest price elasticity, the highest tax elasticity and the highest degree of overreaction among U.S. regions.
- The ratio of elasticities appears to be negatively related to the number of cars: the more the cars owned by the household, the lower the tax elasticity relative to the price elasticity.

Implications

- Responsiveness to tax and price changes can be very different.
- This has implications for the carbon tax debate in the U.S..
- The carbon tax rate that would reduce carbon emissions to any targeted level could be set lower than predicted by the current literature.
- A lower carbon tax rate would also probably be perceived as more acceptable than a correspondingly higher tax rate, thus improving the effectiveness-acceptability trade-off.

Implications

- Responsiveness to tax and price changes can be very different.
- This has implications for the carbon tax debate in the U.S..
- The carbon tax rate that would reduce carbon emissions to any targeted level could be set lower than predicted by the current literature.
- A lower carbon tax rate would also probably be perceived as more acceptable than a correspondingly higher tax rate, thus improving the effectiveness-acceptability trade-off.

Implications

- Responsiveness to tax and price changes can be very different.
- This has implications for the carbon tax debate in the U.S..
- The carbon tax rate that would reduce carbon emissions to any targeted level could be set lower than predicted by the current literature.
- A lower carbon tax rate would also probably be perceived as more acceptable than a correspondingly higher tax rate, thus improving the effectiveness-acceptability trade-off.

Implications

- Responsiveness to tax and price changes can be very different.
- This has implications for the carbon tax debate in the U.S..
- The carbon tax rate that would reduce carbon emissions to any targeted level could be set lower than predicted by the current literature.
- A lower carbon tax rate would also probably be perceived as more acceptable than a correspondingly higher tax rate, thus improving the effectiveness-acceptability trade-off.

Implications

- Responsiveness to tax and price changes can be very different.
- This has implications for the carbon tax debate in the U.S..
- The carbon tax rate that would reduce carbon emissions to any targeted level could be set lower than predicted by the current literature.
- A lower carbon tax rate would also probably be perceived as more acceptable than a correspondingly higher tax rate, thus improving the effectiveness-acceptability trade-off.

Thank you!

[^0]: *0 "Never attended school", 10 " ${ }^{15}$ through $8^{\text {th }}$ grade", 11 " " 9 th through $12^{\text {th }}$ grade", 12 "High school graduate", 13 "Some college, less than college graduate", 14 "Associate's degree", 15
 "Bachelor's degree", 16 "Master's degree", 17 "Professional/Doctorate degree".

[^1]: Note: Standard Errors in Italics below coefficients. Bold entries correspond to rejection of $H_{0}: e=0$ at the 5% significance

