Exercise Solutions

February 2023

1
let $f: X \rightarrow \mathbb{P}_{R}^{n}$. Let $\mathcal{S}=\{\mathcal{O}(i)[-i]: 0 \leq i \leq n\}$. Then, we know from the first talk that $\mathcal{O}(l) \in\langle\mathcal{S}\rangle_{n+1}$ for all $l \leq 0$.
Note that as $\mathcal{O}(l)$ is flat for any l, we get that $f^{*}(\mathcal{O}(l)) \cong L f^{*}(\mathcal{O}(l))$.
Now, $f^{*}(\mathcal{O}(l)) \cong L f^{*}(\mathcal{O}(l)) \in L f^{*}\left(\langle\mathcal{S}\rangle_{n+1}\right) \subseteq\left\langle L f^{*} \mathcal{S}\right\rangle_{n+1}$
So, if $f^{*}(\mathcal{S}) \subset \mathcal{A} \Longrightarrow\left\langle L f^{*} \mathcal{S}\right\rangle_{n+1} \subset \mathcal{A}$ and hence $f^{*}(\mathcal{O}(l)) \in \mathcal{A}$ for all $l \leq 0$

2

let $\left\{E_{i}, f_{i}: E_{i} \rightarrow E_{i+1}\right\}$ be a special Cauchy sequence in $\mathbf{D}^{\text {perf }}(X)$. Then, by looking at the long exact sequence corresponding to the triangle defining the homotopy colimit of this Cauchy sequence, it is easy to see that it lies in $\mathbf{D}_{\text {coh }}^{\mathrm{b}}(X)$. Let the homotopy colimit be E.
We note the following important property of these special Cauchy sequences : By shifting if necessary, we can assume that $E \in \mathbf{D}_{\text {coh }}^{\mathrm{b}}(X) \geq 0$. For large enough $i, H^{n}\left(E_{i}\right) \rightarrow H^{n}\left(E_{n+1}\right)$ is an isomorphism for all $n \geq 0$. Then, $E \cong E_{i}^{\geq 0}$ for large i (First show that there exists a map $E_{j} \rightarrow E_{i}^{\geq 0}$ for a fixed large i, and j large. This gives a map $E \rightarrow E_{i}^{\geq 0}$. Then, show that it is a quasi - isomorphism.).
Now, suppose we have two special Cauchy sequences $\left\{D_{i}\right\}$ and $\left\{E_{i}\right\}$, and maps between the two. We can complete each of these to a distinguished triangle to get a special Cauchy sequence $\left\{F_{i}\right\}$. By shifting if necessary, we can assume that the homotopy colimits, D and E lie in $\mathbf{D}_{\text {coh }}^{\mathrm{b}}(X)^{\geq 1} \subset \mathbf{D}_{\text {coh }}^{\mathrm{b}}(X)^{\geq 0}$. This tells us that the homotopy limit of the third sequence, F, also lies in $\mathbf{D}_{\text {coh }}^{\mathrm{b}}(X)^{\geq 0}$. We have a commutative diagram for large n :

We can complete these to triangles to get,

But, from the long exact sequences of cohomology, we get that $F^{\prime} \cong F_{n}^{\geq 0} \cong F$, and hence, we get a triangle in $\mathbf{D}_{\text {coh }}^{\mathrm{b}}(X)$

3

(a)

We first state a small lemma.
Lemma 3.1. Let $P \in \mathbf{K}^{-}(R-$ proj $)$. For any $n \in \mathbb{Z}$ such that $H^{i}(P)=0$, for all $i>n$, there exists a complex P_{n} quasi - isomorphic (and in fact homotopy isomorphic) to P, such that $P_{n}^{i}=0$ for all $i>n$.

Let $\left\{E_{i}, f_{i}: E_{i} \rightarrow E_{i+1}\right\}$ be a Cauchy sequence in $\mathbf{K}^{b}(R-\operatorname{proj})$. The homotopy colimit clearly lies in $\mathbf{D}_{\mathbf{q} \mathbf{c}}^{-}(X)$. By shifting if necessary, we can assume that it lies in $\mathbf{D}_{\mathbf{q c}}(X) \leq 0$.
Upto passing to a subsequence, we can assume that $H^{n}\left(E_{i}\right) \rightarrow H^{n}\left(E_{i+1}\right)$ is an isomorphism for all $n \geq-i$. By the Lemma, we can assume that each of the complexes have non - zero terms only in non - positive degrees.
Then, we proceed in the following manner :
We will choose representatives for E_{i} for $i>1$, such that $E_{i}^{n}=E_{i-1}^{n}$ for all $n>-i$. We do this by induction. So assume that $E_{i}^{n}=E_{i-1}^{n}$ for all $n>-i$ and $i \leq l$ for some $l \in \mathbb{Z}$.
Complete the map $E_{l} \rightarrow E_{l+1}$ to a triangle $E_{l} \rightarrow E_{l+1} \rightarrow F \rightarrow$. Note that $F \in \mathbf{K}^{b}(R-\operatorname{proj})$, as it is the mapping cone on a morphism in $\mathbf{K}^{b}(R-\operatorname{proj})$. Then, as $H^{n}\left(E_{l}\right) \rightarrow H^{n}\left(E_{l+1}\right)$ is an isomorphism for all $n \geq-l$, we get that $H^{n}(F)=0$, for all $n>-l$. So, by the lemma, we get that upto isomorphism, we can assume $F^{n}=0$ for all $n>-l$. But, now from the triangle $F[-1] \rightarrow E_{l} \rightarrow E_{l+1} \rightarrow$, we get that E_{l+1} is quasi - isomorphic to the cone on $F[-1] \rightarrow E_{l}$. This gives us the required representative of E_{l+1}
Further, note that with this choice, the map f_{i}^{n} is the identity map for all $i \geq-n$.
Now, it is easy to see that the complex E with $E^{i}=E_{i}^{i}$, and the differential given similarly, is quasi - isomorphic to the homotopy colimit of E_{i}. As $E \in$
$\mathbf{K}^{-}(R-\operatorname{proj})$, we are done.
Conversely, given any complex $P \in \mathbf{K}^{b}(R-\operatorname{proj})$, it is the homotopy colimit of its brutal truncations $\tau^{\geq-n} P$.

(b)

This follows the same way as Question 2.

4

(a)

Suppose we are given a Cauchy sequence $\left\{E_{i}, f_{i}: E_{i+1} \rightarrow E_{i}\right\}$ in $\mathbf{D}^{b}(R-\bmod)$. Let E be the homotopy limit of this sequence. We note that as the sequence $\left\{H^{n}\left(E_{i}\right)\right\}_{i=1}^{\infty}$ eventually stabilises, $\Pi_{i} H^{n}\left(E_{i}\right) \xrightarrow{1-\text { shift }} \Pi_{i} H^{n}\left(E_{i}\right)$ is a split epimorhism. Then, from the triangle, $E \rightarrow \Pi E_{i} \rightarrow \Pi E_{i} \rightarrow$, we get the short exact sequence, $0 \rightarrow H^{n}(E) \rightarrow \Pi H^{n}\left(E_{i}\right) \rightarrow \Pi H^{n}\left(E_{i}\right) \rightarrow 0$. This tells us that $\lim H^{n}\left(E_{i}\right)=H^{n}(E)$, which immediately gives us that $E \in \mathbf{D}^{-}(R-\bmod)=$ $\overleftarrow{\mathbf{K}^{-}}(R-\operatorname{proj})$

Conversely, any complex $P \in \mathbf{K}^{b}(R-\operatorname{proj})$ is the homotopy limit of its canonical truncations $P^{\geq-n}$

(b)

Let E be the homotopy colimit of a special Cauchy sequence $\left\{E_{i}, f_{i}: E_{i+1} \rightarrow\right.$ $\left.E_{i}\right\}$ in $\mathbf{D}^{b}(R-\bmod)$. Consider the triangle $\tau^{>-m} E \rightarrow E \rightarrow \tau^{\leq-m} E \rightarrow$ given by the brutal truncations of E. Note that the homotopy colimit of $\left\{\left(\tau^{\leq-m} E\right)^{\geq-n}\right\}_{n \geq m}$ is $\tau=-m$. This gives us a triangle

$$
\bigoplus_{n \geq m}\left(\tau^{\leq-m} E\right)^{\geq-n} \rightarrow \tau^{\leq-m} E \rightarrow \bigoplus_{n \geq m}\left(\tau^{\leq-m} E\right)^{\geq-n}[1] \rightarrow
$$

. Note that, $\operatorname{Hom}\left(E, \mathbf{D}^{b}(R-\bmod)^{\leq-m}=0\right)$, and hence $\left(E \rightarrow \tau^{\leq-m} E \rightarrow\right.$ $\left.\bigoplus_{n \geq m}\left(\tau^{\leq-m} E\right)^{\geq-n}[1]\right)=0$. So, $E \rightarrow \tau^{\leq-m} E$ factors through a map $E \rightarrow$ $\bigoplus_{n \geq m}\left(\tau^{\leq-m} E\right)^{\geq-n}$, which is zero. So, we get that E is a direct summand of $\tau^{>-m} E \in \mathbf{K}^{b}(R-\operatorname{proj})$, and hence must itself belong to $\mathbf{K}^{b}(R-\operatorname{proj})$.
The converse is easy.

5

This question follows from unpacking the definition of $\mathfrak{S}(\mathcal{T})$ for the sepcific cases, and from Questions 3 and 4 above.

6

(a)

We already know that $\operatorname{Hom}(G[i], G)=0$ for all $i<0$. Consider $\mathcal{S}=\{t \in$ $\left.\mathcal{T}_{G}^{\leq 0}: \operatorname{Hom}(G[i], t)=0, \forall i<0\right\}$. Then $\{G[i]: i \geq 0\} \subseteq \mathcal{S}, \operatorname{Add}(\mathcal{S}) \subseteq \mathcal{S}$ and $\mathcal{S} * \mathcal{S} \subset \mathcal{S}$, which implies that $\mathcal{T}_{G}^{\leq 0} \subseteq \mathcal{S}$.
Conversely, let $t \in \mathcal{T}$ be such that $\operatorname{Hom}(G[i], t)=0, \forall i<0$. Consider the $\mathrm{t}-$ structure triangle, $t^{\leq 0} \rightarrow t \rightarrow t^{>0} \rightarrow t^{\leq 0}[1]$. Now, $\operatorname{Hom}\left(G[i], t^{\leq 0}[1]\right)=0$ for all $i<0$, by above. Hence, we get $\operatorname{Hom}\left(G[i], t^{>0}\right)=0$ for all $i<0$. We already know $\operatorname{Hom}\left(G[i], t^{>0}\right)=0$ for all $i \geq 0$, and so, as G is a generator, we get that $t^{>0}=0$, and hence, $t \cong t^{\leq 0} \in \mathcal{T}_{G}^{\leq 0}$.

(b)

Let $t \in \mathcal{T}_{G}^{\leq 0}$. Consider the natural map $\bigoplus_{\operatorname{Hom}(G, t)} G \rightarrow t$, and complete it to a triangle, $\bigoplus_{\operatorname{Hom}(G, t)} G \rightarrow t \rightarrow s \rightarrow \bigoplus_{\operatorname{Hom}(G, t)} G[1]$. Then, for any map $G[i] \rightarrow s$ with $i \leq 0$, we get that the composite $\left(G[i] \rightarrow s \rightarrow \bigoplus_{\operatorname{Hom}(G, t)} G[1]\right)=0$. Hence, it must factor through a map $G[i] \rightarrow t$. As $i \geq 0$, and $t \in \mathcal{T}_{G}^{\leq 0}$, for the map to be non - zero, i itself must be zero. Hence, this map must in turn must factor through $\bigoplus_{\operatorname{Hom}(G, t)} G \rightarrow t$. So, we get that the original map $(G[i] \rightarrow s)=\left(G[i] \rightarrow \bigoplus_{\operatorname{Hom}(G, t)} G \rightarrow t \rightarrow s\right)=0$, as the last two maps are consecutive maps of a triangle. And so, by part (a), $s \in \mathcal{T}_{G}^{\leq-1}$, and we are done.

