EXERCISES FOR 'TRIANGULATED CATEGORIES AND COMPLETIONS'

Exercise 1. Let A be a ring and M an A-module.
(a) Write M as a filtered colimit of finitely presented A-modules.
(b) Write M as a directed colimit of finitely presented A-modules. Hint: Use a presentation of M.

Exercise 2. Let $\mathcal{D} \subseteq \mathcal{C}$ be a full subcategory. Show that the inclusion induces a fully faithful functor $\operatorname{Ind}(\mathcal{D}) \rightarrow \operatorname{Ind}(\mathcal{C})$.
Exercise 3 (Example 2.9). Let \mathcal{C} be an essentially small additive category with cokernels.
(a) Show that a functor $F: \mathcal{C}^{\mathrm{op}} \rightarrow \mathrm{Ab}$ is left exact if and only if it is a filtered colimit of representable functors. Then $\operatorname{Ind}(\mathcal{C})$ identifies with the category of left exact functors $\operatorname{Lex}\left({ }^{\mathrm{Cop}}, \mathrm{Ab}\right)$.
(b) Assume \mathcal{C} is abelian. Then the category of left exact functors is abelian. Show that the Yoneda functor $\mathcal{C} \rightarrow \operatorname{Lex}\left(\mathrm{C}^{\mathrm{op}}, \mathrm{Ab}\right)$ is exact.
Exercise 4. View the rational numbers (\mathbb{Q}, \leq) with the usual ordering as a category.
(a) Show that a Cauchy sequence $x \in \operatorname{Cau}(\mathbb{N}, \mathbb{Q})$ is an increasing sequence of rational numbers.
(b) Let $x \rightarrow y$ be an eventually invertible morphism of Cauchy sequences. Show that x and y are either both eventually constant or neither is eventually constant.
(c) Describe $\operatorname{Ind}_{\text {Cau }}(\mathbb{Q})$.

Exercise 5. We consider the category $\mathcal{C}=\mathrm{fl}(\mathbb{Z})$.
(a) Let $X \in \operatorname{Fun}(\mathbb{N}, \mathcal{C})$ be given by $X_{n}=\bigoplus_{p \leqslant n \text { prime }} \mathbb{Z} / p$ with the natural inclusion maps. Show that X is a Cauchy sequence in \mathcal{C} and that X is not artinian.
(b) Find $\operatorname{Ind}_{\text {Cau }}(\mathrm{fl}(\mathbb{Z}))$.

Exercise 6. Let \mathcal{C}, \mathcal{D} and \mathcal{E} be triangulated categories.
(a) Assume that $f: \mathcal{C} \rightarrow \mathcal{D}$ and $g: \mathcal{D} \rightarrow \mathcal{E}$ are completions. Show that $g \circ$ $f: \mathcal{C} \rightarrow \mathcal{E}$ is a completion. Under which conditions is $g \circ f$ sequential or Cauchy sequential?
(b) Show that the identity functor id: $\mathcal{C} \rightarrow \mathcal{C}$ is a sequential Cauchy completion.

Exercise 7. Let $A=k[t] /\left(t^{n}\right)$ (or any self-injective k-algebra of finite representation type) and $\mathcal{C}=\operatorname{stmod}(A)$. Show that the restricted Yoneda functor $\operatorname{StMod}(A) \rightarrow \operatorname{Ind}(\operatorname{stmod}(A))$ is an equivalence. Hence for any essentially small triangulated subcategory \mathcal{C} of $\operatorname{StMod}(A)$ containing the compacts $\operatorname{stmod}(A)$ the functor $\operatorname{stmod}(A) \rightarrow \mathcal{C}$ is a completion.

