Triangulated categories via metric techniques, 1

Amnon Neeman
Australian National University
amnon.neeman@anu.edu.au

22 March 2023

Overview

(1) t-structures: examples and formal definition
(2) Ancient history
(3) First application: a conjecture of Antieau, Gepner and Heller
(4) Something about the proof

Example (the standard t-structure on $\mathbf{D}(\mathcal{A})$)

Let \mathcal{A} be an abelian category. We define two full subcategories of $\mathbf{D}(\mathcal{A})$:

$$
\begin{aligned}
& \mathbf{D}(\mathcal{A})^{\leq 0}=\left\{A^{*} \in \mathbf{D}(\mathcal{A}) \mid H^{i}\left(A^{*}\right)=0 \text { for all } i>0\right\} \\
& \mathbf{D}(\mathcal{A})^{\geq 0}=\left\{A^{*} \in \mathbf{D}(\mathcal{A}) \mid H^{i}\left(A^{*}\right)=0 \text { for all } i<0\right\}
\end{aligned}
$$

Example (the standard t-structure on $\mathbf{D}(\mathcal{A})$)

Let \mathcal{A} be an abelian category. We define two full subcategories of $\mathbf{D}(\mathcal{A})$:

$$
\begin{aligned}
& \mathbf{D}(\mathcal{A})^{\leq 0}=\left\{A^{*} \in \mathbf{D}(\mathcal{A}) \mid H^{i}\left(A^{*}\right)=0 \text { for all } i>0\right\} \\
& \mathbf{D}(\mathcal{A})^{\geq 0}=\left\{A^{*} \in \mathbf{D}(\mathcal{A}) \mid H^{i}\left(A^{*}\right)=0 \text { for all } i<0\right\}
\end{aligned}
$$

$\cdots \longrightarrow Y^{-2} \longrightarrow Y^{-1}$

\qquad

Example (the standard t-structure on $\mathbf{D}(\mathcal{A})$)

Let \mathcal{A} be an abelian category. We define two full subcategories of $\mathbf{D}(\mathcal{A})$:

$$
\begin{aligned}
& \mathbf{D}(\mathcal{A})^{\leq 0}=\left\{A^{*} \in \mathbf{D}(\mathcal{A}) \mid H^{i}\left(A^{*}\right)=0 \text { for all } i>0\right\} \\
& \mathbf{D}(\mathcal{A})^{\geq 0}=\left\{A^{*} \in \mathbf{D}(\mathcal{A}) \mid H^{i}\left(A^{*}\right)=0 \text { for all } i<0\right\}
\end{aligned}
$$

Put $I=\operatorname{Im}\left(Y^{-1} \rightarrow Y^{0}\right)$, and $Q=Y^{0} / I$.
$\cdots \longrightarrow Y^{-2} \longrightarrow Y^{-1}$

Example (the standard t-structure on $\mathbf{D}(\mathcal{A})$)

Let \mathcal{A} be an abelian category. We define two full subcategories of $\mathbf{D}(\mathcal{A})$:

$$
\mathbf{D}(\mathcal{A})^{\leq 0}=\left\{A^{*} \in \mathbf{D}(\mathcal{A}) \mid H^{i}\left(A^{*}\right)=0 \text { for all } i>0\right\}
$$

$$
\mathbf{D}(\mathcal{A})^{\geq 0}=\left\{A^{*} \in \mathbf{D}(\mathcal{A}) \mid H^{i}\left(A^{*}\right)=0 \text { for all } i<0\right\}
$$

$$
\text { Put } I=\operatorname{Im}\left(Y^{-1} \rightarrow Y^{0}\right), \text { and } Q=Y^{0} / I .
$$

$$
\text { Put } I=\operatorname{Im}\left(Y^{-1} \rightarrow Y^{0}\right) \text {, and } Q=Y^{0} / I \text {. }
$$

For every $Y \in \mathbf{D}(\mathcal{A})$ we have produced

$$
\text { Put } I=\operatorname{Im}\left(Y^{-1} \rightarrow Y^{0}\right) \text {, and } Q=Y^{0} / I \text {. }
$$

For every $Y \in \mathbf{D}(\mathcal{A})$ we have produced

with $X \in \mathbf{D}(\mathcal{A})^{\leq 0}[1]$ and with $Z \in \mathbf{D}(\mathcal{A})^{\geq 0}$.

Put $I=\operatorname{Im}\left(Y^{-1} \rightarrow Y^{0}\right)$, and $Q=Y^{0} / I$.

For every $Y \in \mathbf{D}(\mathcal{A})$ we have produced an exact triangle

with $X \in \mathbf{D}(\mathcal{A})^{\leq 0}[1]$ and with $Z \in \mathbf{D}(\mathcal{A})^{\geq 0}$.

Definition

A t-structure on a triangulated category \mathcal{T} is a pair of full subcategories $(\mathcal{T} \leq 0, \mathcal{T} \geq 0)$ satisfying
-
-
-

Definition

A t-structure on a triangulated category \mathcal{T} is a pair of full subcategories $(\mathcal{T} \leq 0, \mathcal{T} \geq 0)$ satisfying

- $\mathcal{T}{ }^{\leq 0}[1] \subset \mathcal{T} \leq 0 \quad$ and $\quad \mathcal{T} \geq 0 \subset \mathcal{T} \geq 0[1]$

Definition

A t-structure on a triangulated category \mathcal{T} is a pair of full subcategories $(\mathcal{T} \leq 0, \mathcal{T} \geq 0)$ satisfying

- $\mathcal{T} \leq 0[1] \subset \mathcal{T} \leq 0 \quad$ and $\quad \mathcal{T} \geq 0 \subset \mathcal{T} \geq 0[1]$
- $\operatorname{Hom}(\mathcal{T} \leq 0[1], \quad \mathcal{T} \geq 0)=0$

Definition

A t-structure on a triangulated category \mathcal{T} is a pair of full subcategories $(\mathcal{T} \leq 0, \mathcal{T} \geq 0)$ satisfying

- $\mathcal{T} \leq 0[1] \subset \mathcal{T} \leq 0 \quad$ and $\quad \mathcal{T} \geq 0 \subset \mathcal{T} \geq 0[1]$
- $\operatorname{Hom}(\mathcal{T} \leq 0[1], \quad \mathcal{T} \geq 0)=0$
- For every object $B \in \mathcal{T}$ there exists a triangle $A \longrightarrow B \longrightarrow C \longrightarrow$ with $A \in \mathcal{T} \leq 0$ [1] and $C \in \mathcal{T} \geq 0$.

Given an object $B \in \mathcal{T}$, the third property of a t-structure says that there exists an exact triangle

$$
A \longrightarrow B \longrightarrow C \longrightarrow A[1]
$$

with $A \in \mathcal{T}^{\leq 0}[1]$ and with $C \in \mathcal{T} \geq 0$.

Given an object $B \in \mathcal{T}$, the third property of a t-structure says that there exists an exact triangle

$$
A \longrightarrow B \longrightarrow C \longrightarrow A[1]
$$

with $A \in \mathcal{T}^{\leq 0}[1]$ and with $C \in \mathcal{T} \geq 0$.
This triangle is often written

$$
B^{\leq-1} \longrightarrow B \longrightarrow B^{\geq 0} \longrightarrow B^{\leq-1}[1]
$$

Notation

For $n \in \mathbb{Z}$ we adopt the shorthand

$$
\mathcal{T} \leq n=\mathcal{T}^{\leq 0}[-n], \quad \mathcal{T}^{\geq n}=\mathcal{T}^{\geq 0}[-n] .
$$

Definition (Bounded t-Structures)

Notation

For $n \in \mathbb{Z}$ we adopt the shorthand

$$
\mathcal{T}^{\leq n}=\mathcal{T}^{\leq 0}[-n], \quad \mathcal{T}^{\geq n}=\mathcal{T}^{\geq 0}[-n] .
$$

Definition (Bounded t-Structures)

A t-structure $\left(\mathcal{T} \leq 0, \mathcal{T}^{\geq 0}\right)$ is called bounded if, for every object $X \in \mathcal{T}$, there exists an integer $n>0$ with

$$
X[n] \in \mathcal{T} \leq 0 \quad \text { and } \quad X[-n] \in \mathcal{T} \geq 0
$$

Let X be a coherent scheme and $Z \subset X$ a closed subset with quasicompact complement.
We define $\mathbf{D}_{\text {coh }, Z}^{-}(X)$ to be the category whose objects are cochain complexes of \mathcal{O}_{X}-modules, such that
(1)
(2)
(3)

Let X be a coherent scheme and $Z \subset X$ a closed subset with quasicompact complement.
We define $\mathbf{D}_{\text {coh }, Z}^{-}(X)$ to be the category whose objects are cochain complexes of \mathcal{O}_{X}-modules, such that
(1) The cohomology vanishes in degrees $n \gg 0$.
(2)
(3)

Let X be a coherent scheme and $Z \subset X$ a closed subset with quasicompact complement.
We define $\mathbf{D}_{\text {coh }, Z}^{-}(X)$ to be the category whose objects are cochain complexes of \mathcal{O}_{X}-modules, such that
(1) The cohomology vanishes in degrees $n \gg 0$.
(2) All the cohomology sheaves are coherent.
(3)

Let X be a coherent scheme and $Z \subset X$ a closed subset with quasicompact complement.
We define $\mathbf{D}_{\text {coh }, Z}^{-}(X)$ to be the category whose objects are cochain complexes of \mathcal{O}_{X}-modules, such that
(1) The cohomology vanishes in degrees $n \gg 0$.
(2) All the cohomology sheaves are coherent.
(3) The restriction to $X-Z$ is acyclic.

Let X be a coherent scheme and $Z \subset X$ a closed subset with quasicompact complement.
We define $\mathbf{D}_{\text {coh }, Z}^{-}(X)$ to be the category whose objects are cochain complexes of \mathcal{O}_{X}-modules, such that
(1) The cohomology vanishes in degrees $n \gg 0$.
(2) All the cohomology sheaves are coherent.
(3) The restriction to $X-Z$ is acyclic.

Take any $F \in \mathbf{D}_{\text {coh }, z}^{-}(X)$.

Let X be a coherent scheme and $Z \subset X$ a closed subset with quasicompact complement.
We define $\mathbf{D}_{\text {coh }, Z}^{-}(X)$ to be the category whose objects are cochain complexes of \mathcal{O}_{X}-modules, such that
(1) The cohomology vanishes in degrees $n \gg 0$.
(2) All the cohomology sheaves are coherent.
(3) The restriction to $X-Z$ is acyclic.

Take any $F \in \mathbf{D}_{\text {coh }, z}^{-}(X)$.
Resolving F by vector bundles, we may represent it as a complex
$\cdots \longrightarrow \mathcal{V}^{m-1} \longrightarrow \mathcal{V}^{m} \longrightarrow \cdots \longrightarrow \mathcal{V}^{n-1} \longrightarrow \mathcal{V}^{n} \longrightarrow 0 \longrightarrow \cdots$

Let X be a coherent scheme and $Z \subset X$ a closed subset with quasicompact complement.
We define $\mathbf{D}_{\text {coh }, Z}^{-}(X)$ to be the category whose objects are cochain complexes of \mathcal{O}_{X}-modules, such that
(1) The cohomology vanishes in degrees $n \gg 0$.
(2) All the cohomology sheaves are coherent.
(3) The restriction to $X-Z$ is acyclic.

Take any $F \in \mathbf{D}_{\text {coh }, z}^{-}(X)$.

Resolving F by vector bundles, we may represent it as a complex

This gives an exact triangle

$$
E \longrightarrow F \longrightarrow D[1]
$$ with $E \in \mathbf{D}^{\text {perf }}(X)$ and $D \in \mathbf{D}_{\text {coh }}^{-}(X)^{\leq m}$.

\square

This gives an exact triangle

$$
D \longrightarrow E \longrightarrow F \longrightarrow D[1]
$$

$$
\text { with } E \in \mathbf{D}^{\text {perf }}(X) \text { and } D \in \mathbf{D}_{\text {coh }}^{-}(X)^{\leq m}
$$

\square

This gives an exact triangle

$$
D \longrightarrow E \longrightarrow F \longrightarrow D[1]
$$

with $E \in \mathbf{D}^{\text {perf }}(X)$ and $D \in \mathbf{D}_{\text {coh }}^{-}(X)^{\leq m}$ ．
We have proved the existence of such triangles as long as the scheme X has the resolution property．
\square
\square

This gives an exact triangle

$$
D \longrightarrow E \longrightarrow F \longrightarrow D[1],
$$

with $E \in \mathbf{D}^{\text {perf }}(X)$ and $D \in \mathbf{D}_{\text {coh }}^{-}(X)^{\leq m}$.
We have proved the existence of such triangles as long as the scheme X has the resolution property.

For an unconditional proof, one needs to use ideas from
固 Alexei I. Bondal and Michel Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1-36, 258.

This gives an exact triangle

$$
D \longrightarrow E \longrightarrow F \longrightarrow D[1],
$$

with $E \in \mathbf{D}^{\text {perf }}(X)$ and $D \in \mathbf{D}_{\text {coh }}^{-}(X)^{\leq m}$.
We have proved the existence of such triangles as long as the scheme X has the resolution property.

For an unconditional proof, one needs to use ideas from

Alexei I. Bondal and Michel Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1-36, 258.

囯 Joseph Lipman and Amnon Neeman, Quasi-perfect scheme maps and boundedness of the twisted inverse image functor, Illinois J. Math. 51 (2007), 209-236.

For a proof that works in the relative context, that is given $F \in \mathbf{D}_{\text {coh }, Z}^{-}(X)$ it produces a triangle

$$
D \longrightarrow E \longrightarrow F \longrightarrow D[1],
$$

with $E \in \mathbf{D}_{Z}^{\text {perf }}(X)$ and $D \in \mathbf{D}_{\text {coh }, Z}^{-}(X)^{\leq m}$, see

Tag 36.14 in the Stacks Project.

Let \mathcal{M} be a model category with homotopy category \mathcal{T}, and assume \mathcal{T} has a bounded t-structure. Antieau, Gepner and Heller proved:
(1) If the abelian category $\mathcal{T}^{\complement}$ is noetherian, then $K_{n}(\mathcal{M})=0$ for $n<0$.
(2) Unconditionally we have $K_{-1}(\mathcal{M})=0$.

囯 Benjamin Antieau, David Gepner, and Jeremiah Heller, K-theoretic obstructions to bounded t-structures, Invent. Math. 216 (2019), no. 1, 241-300.

Let \mathcal{M} be a model category with homotopy category \mathcal{T}, and assume \mathcal{T} has a bounded t-structure. Antieau, Gepner and Heller proved:
(1) If the abelian category $\mathcal{T}^{\complement}$ is noetherian, then $K_{n}(\mathcal{M})=0$ for $n<0$.
(2) Unconditionally we have $K_{-1}(\mathcal{M})=0$.

If \mathcal{A} is an abelian category, and $\mathcal{T}=\mathbf{D}^{b}(\mathcal{A})$ with the usual model structure, the vanishing in negative K-theory is due to Schlichting.

囯 Benjamin Antieau, David Gepner, and Jeremiah Heller, K-theoretic obstructions to bounded t-structures, Invent. Math. 216 (2019), no. 1, 241-300.

Corollary

Let X be a finite-dimensional, noetherian scheme. Assume $K_{-1}(X)$ is nonzero. Then the category $\mathbf{D}^{\text {perf }}(X)$ has no bounded t-structure.

國

Corollary

Let X be a finite-dimensional, noetherian scheme. Assume $K_{-1}(X)$ is nonzero. Then the category $\mathbf{D}^{\text {perf }}(X)$ has no bounded t-structure.

If $K_{n}(X)$ is nonzero for $n \leq-2$, then any bounded t-structure on $\mathrm{D}^{\text {perf }}(X)$ cannot have a noetherian heart.

Corollary

Let X be a finite-dimensional, noetherian scheme. Assume $K_{-1}(X)$ is nonzero. Then the category $\mathbf{D}^{\text {perf }}(X)$ has no bounded t-structure.

If $K_{n}(X)$ is nonzero for $n \leq-2$, then any bounded t-structure on $\mathrm{D}^{\text {perf }}(X)$ cannot have a noetherian heart.

This can be found as Corollary 1.4 in
嗇 Benjamin Antieau, David Gepner, and Jeremiah Heller, K-theoretic obstructions to bounded t-structures, Invent. Math. 216 (2019), no. 1, 241-300.

Conjecture

Let X be a finite-dimensional, noetherian scheme. The category $\mathbf{D}^{\text {perf }}(X)$ has a bounded t -structure if and only if X is regular, in which case $\mathbf{D}^{\text {perf }}(X)=\mathbf{D}_{\text {coh }}^{b}(X)$.

This can be found as Conjecture 1.5 in

Renjamin Antieau, David Gepner, and Jeremiah Heller, K-theoretic obstructions to bounded t-structures, Invent. Math. 216 (2019), no. 1, 241-300.

Theorem

Let X be a a scheme, and let $Z \subset X$ be a closed subset. Let $\mathbf{D}_{Z}^{\text {perf }}(X)$ be the derived category, with objects the perfect complexes on X whose restriction to $X-Z$ is acyclic.

Theorem

Let X be a a scheme, and let $Z \subset X$ be a closed subset. Let $\mathbf{D}_{Z}^{\text {perf }}(X)$ be the derived category, with objects the perfect complexes on X whose restriction to $X-Z$ is acyclic.

Now assume X is noetherian and finite-dimensional. Then the category $\mathbf{D}_{Z}^{\text {perf }}(X)$ has a bounded t-structure if and only if Z is contained in the regular locus of X,

易

Theorem

Let X be a a scheme, and let $Z \subset X$ be a closed subset. Let $\mathbf{D}_{Z}^{\text {perf }}(X)$ be the derived category, with objects the perfect complexes on X whose restriction to $X-Z$ is acyclic.

Now assume X is noetherian and finite-dimensional. Then the category $\mathbf{D}_{Z}^{\text {perf }}(X)$ has a bounded t-structure if and only if Z is contained in the regular locus of X, in which case $\mathbf{D}_{Z}^{\text {perf }}(X)=\mathbf{D}_{\text {coh }, Z}^{b}(X)$.

Theorem

Let X be a a scheme, and let $Z \subset X$ be a closed subset. Let $\mathbf{D}_{Z}^{\text {perf }}(X)$ be the derived category, with objects the perfect complexes on X whose restriction to $X-Z$ is acyclic.

Now assume X is noetherian and finite-dimensional. Then the category $\mathbf{D}_{Z}^{\text {perf }}(X)$ has a bounded t-structure if and only if Z is contained in the regular locus of X, in which case $\mathbf{D}_{Z}^{\text {perf }}(X)=\mathbf{D}_{\text {coh }, Z}^{b}(X)$.

For the proof see

(Amnon Neeman, Bounded t-structures on the category of perfect complexes, https://arxiv.org/abs/2202.08861.

Reminder: $D_{Z}^{\text {perf }}(X)=D_{\text {coh. } Z}^{b}(X)$ if and only if Z is contained in the regular locus of X

Reminder: $D_{Z}^{\text {perf }}(X)=D_{\text {coh }, Z}^{b}(X)$ if and only if Z is contained in the regular locus of X

The question is local in X.

Reminder: $D_{Z}^{\text {perf }}(X)=D_{\text {con }, Z}^{b}(X)$ if and only if Z is contained in the regular locus of X

The question is local in X.
May assume $X=\operatorname{Spec}(R)$ for a local ring R.

Reminder: $D_{Z}^{\text {perf }}(X)=D_{\text {con }, Z}^{b}(X)$ if and only if Z is contained in the regular locus of X

The question is local in X.
May assume $X=\operatorname{Spec}(R)$ for a local ring R.
If the closed point of X does not belong to Z, then $X=X-Z$.

Reminder: $\mathbf{D}_{Z}^{\text {perf }}(X)=\mathbf{D}_{\text {coh }, Z}^{b}(X)$ if and only if Z is contained in the regular locus of X

The question is local in X.
May assume $X=\operatorname{Spec}(R)$ for a local ring R.
If the closed point of X does not belong to Z, then $X=X-Z$.
R is a regular local ring if and only if R / m is of finite projective dimension, if and only if every module is of finite projective dimension.

Something about the proof

It suffices to show that the inclusion $\mathbf{D}_{Z}^{\text {perf }}(X) \longrightarrow \mathbf{D}_{\text {coh }, Z}^{b}(X)$ is an equivalence.

Something about the proof

It suffices to show that the inclusion $\mathbf{D}_{Z}^{\text {perf }}(X) \longrightarrow \mathbf{D}_{\text {coh }, Z}^{b}(X)$ is an equivalence.

Take $F \in \mathbf{D}_{\text {coh }, Z}^{b}(X)$. Without loss of generality assume $F \in \mathbf{D}_{\text {coh }, Z}^{b}(X) \geq 0$. We want to show that $F \in \mathbf{D}_{Z}^{\text {perf }}(X)$.

Something about the proof

It suffices to show that the inclusion $\mathbf{D}_{Z}^{\text {perf }}(X) \longrightarrow \mathbf{D}_{\text {coh }, Z}^{b}(X)$ is an equivalence.

Take $F \in \mathbf{D}_{\text {coh }, Z}^{b}(X)$. Without loss of generality assume $F \in \mathbf{D}_{\text {coh }, Z}^{b}(X)^{\geq 0}$. We want to show that $F \in \mathbf{D}_{Z}^{\text {perf }}(X)$.

The literature we explained gave us an exact triangle

$$
\begin{array}{cc}
E & F \\
\oplus & \oplus \\
\mathbf{D}_{Z}^{\text {perf }}(X) & \mathbf{D}_{\text {coh }, Z}^{b}(X)^{\geq 0}
\end{array}
$$

Something about the proof

It suffices to show that the inclusion $\mathbf{D}_{Z}^{\text {perf }}(X) \longrightarrow \mathbf{D}_{\text {coh }, Z}^{b}(X)$ is an equivalence.

Take $F \in \mathbf{D}_{\text {coh }, Z}^{b}(X)$. Without loss of generality assume $F \in \mathbf{D}_{\text {coh }, Z}^{b}(X)^{\geq 0}$. We want to show that $F \in \mathbf{D}_{Z}^{\text {perf }}(X)$.

The literature we explained gave us an exact triangle

$$
\begin{array}{ccc}
D & E & \oplus \\
m & \oplus & \oplus \\
\mathbf{D}_{\text {coh }, Z}^{b}(X)^{\leq-m} & \mathbf{D}_{Z}^{\text {perf }}(X) & \mathbf{D}_{\text {coh }, Z}^{b}(X)^{\geq 0}
\end{array}
$$

Something about the proof

It suffices to show that the inclusion $\mathbf{D}_{Z}^{\text {perf }}(X) \longrightarrow \mathbf{D}_{\text {coh }, Z}^{b}(X)$ is an equivalence.

Take $F \in \mathbf{D}_{\text {coh }, Z}^{b}(X)$. Without loss of generality assume $F \in \mathbf{D}_{\text {coh }, Z}^{b}(X) \geq 0$. We want to show that $F \in \mathbf{D}_{Z}^{\text {perf }}(X)$.

The literature we explained gave us an exact triangle

Definition

Let \mathcal{T} be a triangulated category. Two t-structures $\left(\mathcal{T}_{1}^{\leq 0}, \mathcal{T}_{1}{ }^{\geq 0}\right)$ and $\left(\mathcal{T}_{2}{ }^{\leq 0}, \mathcal{T}_{2}^{\geq 0}\right)$ are declared equivalent if there exists an integer $n>0$ with

$$
\mathcal{T}_{1}^{\leq-n} \subset \mathcal{T}_{2}^{\leq 0} \subset \mathcal{T}_{1}^{\leq n}
$$

Definition

Let \mathcal{T} be a triangulated category. Two t-structures $\left(\mathcal{T}_{1}^{\leq 0}, \mathcal{T}_{1}^{\geq 0}\right)$ and $\left(\mathcal{T}_{2}{ }^{\leq 0}, \mathcal{T}_{2}^{\geq 0}\right)$ are declared equivalent if there exists an integer $n>0$ with

$$
\mathcal{T}_{1}^{\leq-n} \subset \mathcal{T}_{2}^{\leq 0} \subset \mathcal{T}_{1}^{\leq n}
$$

We are given a bounded t-structure on $\mathbf{D}_{Z}^{\text {perf }}(X)$, and we would like to compare it to the standard t-structure on $\mathbf{D}_{\mathrm{coh}, Z}^{b}(X)$. For technical reasons this is easiest to do in $\mathbf{D}_{\mathrm{qc}, Z}(X)$.

気

Definition

Let \mathcal{T} be a triangulated category. Two t-structures $\left(\mathcal{T}_{1}{ }^{\leq 0}, \mathcal{T}_{1}{ }^{\geq 0}\right)$ and $\left(\mathcal{T}_{2}^{\leq 0}, \mathcal{T}_{2}^{\geq 0}\right)$ are declared equivalent if there exists an integer $n>0$ with

$$
\mathcal{T}_{1}^{\leq-n} \subset \mathcal{T}_{2}^{\leq 0} \subset \mathcal{T}_{1}^{\leq n} .
$$

We are given a bounded t-structure on $\mathbf{D}_{Z}^{\text {perf }}(X)$, and we would like to compare it to the standard t-structure on $\mathbf{D}_{\text {coh }, Z}^{b}(X)$. For technical reasons this is easiest to do in $\mathbf{D}_{\mathrm{qc}, Z}(X)$.

We appeal to Theorem A. 1 in
目 Leovigildo Alonso Tarrío, Ana Jeremías López, and María José Souto Salorio, Construction of t-structures and equivalences of derived categories, Trans. Amer. Math. Soc. 355 (2003), no. 6, 2523-2543 (electronic).

Theorem

Let \mathcal{T} be a triangulated category with coproducts, and let $\mathcal{A} \subset \mathcal{T}$ be a set of compact objects satisfying $\mathcal{A}[1] \subset \mathcal{A}$.

Let $\operatorname{Coprod}(\mathcal{A})$ be the smallest full subcategory of \mathcal{T}, containing \mathcal{A} and closed under coproducts and extensions.

Then $\left(\operatorname{Coprod}(\mathcal{A}), \operatorname{Coprod}(\mathcal{A})[1]^{\perp}\right)$ is a t-structure on \mathcal{T}.

This is Theorem A. 1 in
(Leovigildo Alonso Tarrío, Ana Jeremías López, and María José Souto Salorio, Construction of t-structures and equivalences of derived categories, Trans. Amer. Math. Soc. 355 (2003), no. 6, 2523-2543 (electronic).

Now suppose we are given a t-structure $(\mathcal{A}, \mathcal{B})$ on \mathcal{T}^{c},

Now suppose we are given a t-structure $(\mathcal{A}, \mathcal{B})$ on \mathcal{T}^{c}, where $\mathcal{T}^{c} \subset \mathcal{T}$ is the subcategory of compact objects in \mathcal{T}.

Now suppose we are given a t-structure $(\mathcal{A}, \mathcal{B})$ on \mathcal{T}^{c}, where $\mathcal{T}^{c} \subset \mathcal{T}$ is the subcategory of compact objects in \mathcal{T}.

Lemma

Let $\left(\operatorname{Coprod}(\mathcal{A}), \operatorname{Coprod}(\mathcal{A})[1]^{\perp}\right)$ be the induced t-structure on \mathcal{T}. If $E \in \mathcal{T}^{c}$ is an object, then $A=E^{\leq-1}$ and $B=E^{\geq 0}$ are the same, whether computed in \mathcal{T} or in \mathcal{T}^{c}.

Now suppose we are given a t-structure $(\mathcal{A}, \mathcal{B})$ on \mathcal{T}^{c}, where $\mathcal{T}^{c} \subset \mathcal{T}$ is the subcategory of compact objects in \mathcal{T}.

Lemma

Let $\left(\operatorname{Coprod}(\mathcal{A}), \operatorname{Coprod}(\mathcal{A})[1]^{\perp}\right)$ be the induced t-structure on \mathcal{T}. If $E \in \mathcal{T}^{c}$ is an object, then $A=E \leq-1$ and $B=E^{\geq 0}$ are the same, whether computed in \mathcal{T} or in \mathcal{T}^{c}.

Proof.

Form in \mathcal{T}^{c} the truncation triangle $A \longrightarrow E \longrightarrow B \longrightarrow$.

Now suppose we are given a t-structure $(\mathcal{A}, \mathcal{B})$ on \mathcal{T}^{c}, where $\mathcal{T}^{c} \subset \mathcal{T}$ is the subcategory of compact objects in \mathcal{T}.

Lemma

Let $\left(\operatorname{Coprod}(\mathcal{A}), \operatorname{Coprod}(\mathcal{A})[1]^{\perp}\right)$ be the induced t-structure on \mathcal{T}. If $E \in \mathcal{T}^{c}$ is an object, then $A=E \leq-1$ and $B=E^{\geq 0}$ are the same, whether computed in \mathcal{T} or in \mathcal{T}^{c}.

Proof.

Form in \mathcal{T}^{c} the truncation triangle $A \longrightarrow E \longrightarrow B \longrightarrow$. We have

$$
A \in \mathcal{A}[1]
$$

Now suppose we are given a t-structure $(\mathcal{A}, \mathcal{B})$ on \mathcal{T}^{c}, where $\mathcal{T}^{c} \subset \mathcal{T}$ is the subcategory of compact objects in \mathcal{T}.

Lemma

Let $\left(\operatorname{Coprod}(\mathcal{A}), \operatorname{Coprod}(\mathcal{A})[1]^{\perp}\right)$ be the induced t-structure on \mathcal{T}. If $E \in \mathcal{T}^{c}$ is an object, then $A=E \leq-1$ and $B=E^{\geq 0}$ are the same, whether computed in \mathcal{T} or in \mathcal{T}^{c}.

Proof.

Form in \mathcal{T}^{c} the truncation triangle $A \longrightarrow E \longrightarrow B \longrightarrow$. We have

$$
A \in \mathcal{A}[1] \subset \operatorname{Coprod}(\mathcal{A})[1]
$$

Now suppose we are given a t-structure $(\mathcal{A}, \mathcal{B})$ on \mathcal{T}^{c}, where $\mathcal{T}^{c} \subset \mathcal{T}$ is the subcategory of compact objects in \mathcal{T}.

Lemma

Let $\left(\operatorname{Coprod}(\mathcal{A}), \operatorname{Coprod}(\mathcal{A})[1]^{\perp}\right)$ be the induced t-structure on \mathcal{T}. If $E \in \mathcal{T}^{c}$ is an object, then $A=E \leq-1$ and $B=E^{\geq 0}$ are the same, whether computed in \mathcal{T} or in \mathcal{T}^{c}.

Proof.

Form in \mathcal{T}^{c} the truncation triangle $A \longrightarrow E \longrightarrow B \longrightarrow$. We have

$$
A \in \mathcal{A}[1] \subset \operatorname{Coprod}(\mathcal{A})[1]
$$

and

$$
B \in \mathcal{B}=(\mathcal{A}[1])^{\perp}
$$

Now suppose we are given a t-structure $(\mathcal{A}, \mathcal{B})$ on \mathcal{T}^{c}, where $\mathcal{T}^{c} \subset \mathcal{T}$ is the subcategory of compact objects in \mathcal{T}.

Lemma

Let $\left(\operatorname{Coprod}(\mathcal{A}), \operatorname{Coprod}(\mathcal{A})[1]^{\perp}\right)$ be the induced t-structure on \mathcal{T}. If $E \in \mathcal{T}^{c}$ is an object, then $A=E \leq-1$ and $B=E^{\geq 0}$ are the same, whether computed in \mathcal{T} or in \mathcal{T}^{c}.

Proof.

Form in \mathcal{T}^{c} the truncation triangle $A \longrightarrow E \longrightarrow B \longrightarrow$. We have

$$
A \in \mathcal{A}[1] \subset \operatorname{Coprod}(\mathcal{A})[1]
$$

and

$$
B \in \mathcal{B}=(\mathcal{A}[1])^{\perp} \subset(\operatorname{Coprod}(\mathcal{A})[1])^{\perp}
$$

Now we are assuming that we are given a bounded t-structure $(\mathcal{A}, \mathcal{B})$ on the category $\mathbf{D}_{Z}^{\text {perf }}(X)$, which is the category of compact objects in $\mathbf{D}_{\mathbf{q c}, Z}(X)$.

Now we are assuming that we are given a bounded t-structure $(\mathcal{A}, \mathcal{B})$ on the category $\mathbf{D}_{Z}^{\text {perf }}(X)$, which is the category of compact objects in $\mathbf{D}_{\mathbf{q c}, Z}(X)$.

Suppose we could prove the inclusions

$$
\mathbf{D}_{\mathbf{q} \mathbf{c}, Z}(X)^{\leq-n} \quad \subset \quad \operatorname{Coprod}(\mathcal{A}) \quad \subset \quad \mathbf{D}_{\mathbf{q} \mathbf{c}, Z}(X)^{\leq n}
$$

for some integer n.

Now we are assuming that we are given a bounded t-structure $(\mathcal{A}, \mathcal{B})$ on the category $\mathbf{D}_{Z}^{\text {perf }}(X)$, which is the category of compact objects in $\mathbf{D}_{\mathbf{q c}, Z}(X)$.

Suppose we could prove the inclusions

$$
\mathbf{D}_{\mathbf{q} \mathbf{c}, Z}(X)^{\leq-n} \quad \subset \quad \operatorname{Coprod}(\mathcal{A}) \quad \subset \quad \mathbf{D}_{\mathbf{q} \mathbf{c}, Z}(X)^{\leq n}
$$

for some integer n.
Take $F \in \mathbf{D}_{\text {coh }, Z}^{b}(X)$. Without loss of generality assume $F \in \mathbf{D}_{\text {coh }, Z}^{b}(X) \geq 0$. We want to show that $F \in \mathbf{D}_{Z}^{\text {perf }}(X)$.

Now we are assuming that we are given a bounded t-structure $(\mathcal{A}, \mathcal{B})$ on the category $\mathbf{D}_{Z}^{\text {perf }}(X)$, which is the category of compact objects in $\mathbf{D}_{\mathbf{q c}, Z}(X)$.

Suppose we could prove the inclusions

$$
\mathbf{D}_{\mathbf{q} \mathbf{c}, Z}(X)^{\leq-n} \quad \subset \quad \operatorname{Coprod}(\mathcal{A}) \quad \subset \quad \mathbf{D}_{\mathbf{q c}, Z}(X)^{\leq n}
$$

for some integer n.
Take $F \in \mathbf{D}_{\text {coh }, Z}^{b}(X)$. Without loss of generality assume $F \in \mathbf{D}_{\text {coh }, Z}^{b}(X) \geq 0$. We want to show that $F \in \mathbf{D}_{Z}^{\text {perf }}(X)$.

The literature we explained gave us exact triangles

$$
\begin{array}{ccc}
D & E & \oplus \\
m & \oplus & \oplus \\
\mathbf{D}_{\mathbf{q c}, Z}(X)^{\leq-m} & \mathbf{D}_{Z}^{\text {perf }}(X) & \mathbf{D}_{\mathbf{q c}, Z}(X)^{\geq 0}
\end{array}
$$

The literature we explained gave us exact triangles

$$
\begin{aligned}
& D \longrightarrow E \longrightarrow F \\
& \text { T } \\
& \mathbf{D}_{\mathbf{q c}, Z}(X) \leq-m \\
& \operatorname{Coprod}(\mathcal{A})[m-n]
\end{aligned}
$$

It suffices to show that the standard t -structure on $\mathbf{D}_{\mathbf{q c}, Z}(X)$ is equivalent to the t-structure generated by \mathcal{A}, where $(\mathcal{A}, \mathcal{B})$ is our bounded t-structure on $\mathbf{D}_{Z}^{\text {perf }}(X)$.

It suffices to show that the standard t -structure on $\mathbf{D}_{\mathbf{q c}, Z}(X)$ is equivalent to the t-structure generated by \mathcal{A}, where $(\mathcal{A}, \mathcal{B})$ is our bounded t -structure on $\mathbf{D}_{Z}^{\text {perf }}(X)$.

We need to prove the inclusions

$$
\mathbf{D}_{\mathbf{q} \mathbf{c}, Z}(X)^{\leq-n} \quad \subset \quad \operatorname{Coprod}(\mathcal{A}) \quad \subset \quad \mathbf{D}_{\mathbf{q} \mathbf{c}, Z}(X)^{\leq n}
$$

for some integer n.

It suffices to show that the standard t-structure on $\mathbf{D}_{\mathbf{q c}, Z}(X)$ is equivalent to the t-structure generated by \mathcal{A}, where $(\mathcal{A}, \mathcal{B})$ is our bounded t -structure on $\mathbf{D}_{Z}^{\text {perf }}(X)$.

We need to prove the inclusions

$$
\mathbf{D}_{\mathbf{q c}, Z}(X)^{\leq-n} \quad \subset \quad \operatorname{Coprod}(\mathcal{A}) \quad \subset \quad \mathbf{D}_{\mathbf{q}, Z}(X)^{\leq n}
$$

for some integer n.
We will sketch how to do half of this, that is prove the inclusion

$$
\mathbf{D}_{\mathbf{q c}, Z}(X)^{\leq 0} \quad \subset \quad \operatorname{Coprod}(\mathcal{A}[-n])
$$

for some integer n.

It suffices to show that the standard t-structure on $\mathbf{D}_{\mathbf{q c}, Z}(X)$ is equivalent to the t-structure generated by \mathcal{A}, where $(\mathcal{A}, \mathcal{B})$ is our bounded t -structure on $\mathbf{D}_{Z}^{\text {perf }}(X)$.

We need to prove the inclusions

$$
\mathbf{D}_{\mathbf{q c}, Z}(X)^{\leq-n} \quad \subset \quad \operatorname{Coprod}(\mathcal{A}) \quad \subset \quad \mathbf{D}_{\mathbf{q}, Z}(X)^{\leq n}
$$

for some integer n.
We will sketch how to do half of this, that is prove the inclusion

$$
\mathbf{D}_{\mathbf{q c}, Z}(X)^{\leq 0} \quad \subset \quad \operatorname{Coprod}(\mathcal{A}[-n])
$$

for some integer n.
For simplicity we assume that X is projective and that $Z=X$.

Pick any object $F \in \mathbf{D}_{\mathbf{q c}}(X) \leq 0$. Resolving it, we may produce an isomorph
$\cdots \longrightarrow \mathcal{V}^{m-1} \longrightarrow \mathcal{V}^{m} \longrightarrow \cdots \longrightarrow \mathcal{V}^{-1} \longrightarrow \mathcal{V}^{0} \longrightarrow 0 \longrightarrow \cdots$ where each \mathcal{V}^{i} is a coproduct of line bundles $\mathcal{O}(-\ell)$ for $\ell>0$.

Pick any object $F \in \mathbf{D}_{\mathbf{q c}}(X) \leq 0$. Resolving it, we may produce an isomorph
where each \mathcal{V}^{i} is a coproduct of line bundles $\mathcal{O}(-\ell)$ for $\ell>0$.
Now $(\mathcal{A}, \mathcal{B})$ is a bounded t-structure on the category $\mathbf{D}^{\text {perf }}(X)$.

Pick any object $F \in \mathbf{D}_{\mathbf{q c}}(X) \leq 0$. Resolving it, we may produce an isomorph

where each \mathcal{V}^{i} is a coproduct of line bundles $\mathcal{O}(-\ell)$ for $\ell>0$.
Now $(\mathcal{A}, \mathcal{B})$ is a bounded t-structure on the category $\mathbf{D}^{\text {perf }}(X)$.
Hence, given any integer $N>0$, we can find an integer $M>0$ such that

$$
\mathcal{O}(-\ell) \in \mathcal{A}[-M] \quad \text { for all } 0 \leq \ell \leq N .
$$

Alexander A. Be九̆linson, The derived category of coherent sheaves on \mathbf{P}^{n}, Selecta Mathematica Sovietica, vol. 3, 1983/84, Selected translations, pp. 233-237.

Alexander A. Be九linson, The derived category of coherent sheaves on \mathbf{P}^{n}, Selecta Mathematica Sovietica, vol. 3, 1983/84, Selected translations, pp. 233-237.
(1-1 Dmitri O. Orlov, Smooth and proper noncommutative schemes and gluing of DG categories, Adv. Math. 302 (2016), 59-105.

Let R be a commutative ring. On \mathbb{P}_{R}^{n} we have a surjection

Let R be a commutative ring. On \mathbb{P}_{R}^{n} we have a surjection

$$
\bigoplus_{i=0}^{n} \mathcal{O} \longrightarrow \mathcal{O}(1)
$$

The short exact sequence

$$
0 \longrightarrow R[x] \xrightarrow{x} R[x] \longrightarrow R \longrightarrow 0
$$

gives a quasi-isomorphism of R with the complex

$$
0 \longrightarrow R[x] \xrightarrow{x} R[x] \longrightarrow 0
$$

Let R be a commutative ring. On \mathbb{P}_{R}^{n} we have a surjection

$$
\bigoplus_{i=0}^{n} \mathcal{O} \longrightarrow \mathcal{O}(1)
$$

The short exact sequence

$$
0 \longrightarrow R[x] \xrightarrow{x} R[x] \longrightarrow R \longrightarrow 0
$$

gives a quasi-isomorphism of R with the complex

$$
0 \longrightarrow R[x] \xrightarrow{x} R[x] \longrightarrow 0
$$

Tensoring together $n+1$ of these we deduce a quasi-isomorphism of R with the Koszul complex

$$
\bigotimes_{i=0}^{n}\left(R\left[x_{i}\right] \xrightarrow{x_{i}} R\left[x_{i}\right]\right)
$$

Applying Proj to this, we obtain a quasi-isomorphism of $\mathcal{O}(1)$ with a complex

$$
0 \longrightarrow \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0
$$

Applying Proj to this, we obtain a quasi-isomorphism of $\mathcal{O}(1)$ with a complex

$$
0 \longrightarrow \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0
$$

Tensoring this with itself $\ell>0$ times yields a quasi-isomorphism of $\mathcal{O}(\ell)$ with some complex

$$
\cdots \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0
$$

Applying Proj to this, we obtain a quasi-isomorphism of $\mathcal{O}(1)$ with a complex

$$
0 \longrightarrow \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0
$$

Tensoring this with itself $\ell>0$ times yields a quasi-isomorphism of $\mathcal{O}(\ell)$ with some complex
$\cdots \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$ which has a brutal truncation
$0 \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$

Applying Proj to this, we obtain a quasi-isomorphism of $\mathcal{O}(1)$ with a complex

$$
0 \longrightarrow \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0
$$

Tensoring this with itself $\ell>0$ times yields a quasi-isomorphism of $\mathcal{O}(\ell)$ with some complex

$$
\cdots \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0
$$

which has a brutal truncation
$0 \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$
This brutal truncation defines a class in

$$
\mathrm{Ext}^{n+1}(\mathcal{O}(\ell), \mathcal{V})
$$

Applying Proj to this, we obtain a quasi-isomorphism of $\mathcal{O}(1)$ with a complex

$$
0 \longrightarrow \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0
$$

Tensoring this with itself $\ell>0$ times yields a quasi-isomorphism of $\mathcal{O}(\ell)$ with some complex

$$
\cdots \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0
$$

which has a brutal truncation
$0 \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$
This brutal truncation defines a class in

$$
\operatorname{Ext}^{n+1}(\mathcal{O}(\ell), \mathcal{V})=\operatorname{Ext}^{n+1}(\mathcal{O}, \mathcal{V}(-\ell))=H^{n+1}(\mathcal{V}(-\ell))=0
$$

Applying Proj to this, we obtain a quasi-isomorphism of $\mathcal{O}(1)$ with a complex

$$
0 \longrightarrow \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0
$$

Tensoring this with itself $\ell>0$ times yields a quasi-isomorphism of $\mathcal{O}(\ell)$ with some complex

$$
\cdots \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0
$$

which has a brutal truncation
$0 \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$
This brutal truncation defines a class in

$$
\operatorname{Ext}^{n+1}(\mathcal{O}(\ell), \mathcal{V})=\operatorname{Ext}^{n+1}(\mathcal{O}, \mathcal{V}(-\ell))=H^{n+1}(\mathcal{V}(-\ell))=0
$$

Hence the brutal truncation must be quasi-isomorphic to $\mathcal{O}(\ell) \oplus \mathcal{V}[n]$ for some vector bundle \mathcal{V}.

Applying the functor $(-)^{\vee}=\mathcal{R} \mathcal{H o m}(-, \mathcal{O})$, we obtain a quasi-isomorphism of $\mathcal{O}(-\ell) \oplus \mathcal{V}^{\vee}[-n]$ with

$$
0 \longrightarrow \oplus \mathcal{O} \longrightarrow \oplus \mathcal{O}(1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(n-1) \longrightarrow \oplus \mathcal{O}(n) \longrightarrow 0
$$

Applying the functor $(-)^{\vee}=\mathcal{R H o m}(-, \mathcal{O})$, we obtain a quasi-isomorphism of $\mathcal{O}(-\ell) \oplus \mathcal{V}^{\vee}[-n]$ with

$$
0 \longrightarrow \oplus \mathcal{O} \longrightarrow \oplus \mathcal{O}(1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(n-1) \longrightarrow \oplus \mathcal{O}(n) \longrightarrow 0
$$

Thus if $\mathcal{A}[-M]$ contains

$$
\mathcal{O}, \quad \mathcal{O}(1)[-1], \quad \ldots, \quad \mathcal{O}(n-1)[-n+1], \quad \mathcal{O}(n)[-n]
$$

then it must contain $\mathcal{O}(-\ell)$ for all $\ell \geq 0$.

Applying the functor $(-)^{\vee}=\mathcal{R} \mathcal{H o m}(-, \mathcal{O})$, we obtain a quasi-isomorphism of $\mathcal{O}(-\ell) \oplus \mathcal{V}^{\vee}[-n]$ with

$$
0 \longrightarrow \oplus \mathcal{O} \longrightarrow \oplus \mathcal{O}(1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(n-1) \longrightarrow \oplus \mathcal{O}(n) \longrightarrow 0
$$

Thus if $\mathcal{A}[-M]$ contains

$$
\mathcal{O}, \quad \mathcal{O}(1)[-1], \quad \ldots, \quad \mathcal{O}(n-1)[-n+1], \quad \mathcal{O}(n)[-n]
$$

then it must contain $\mathcal{O}(-\ell)$ for all $\ell \geq 0$.

But then

$$
\mathbf{D}_{\mathbf{q c}}(X)^{\leq 0} \quad \subset \quad \operatorname{Coprod}(\mathcal{A}[-M]) .
$$

Thank you!

