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The construction of ⟨G ⟩[m,n]
ℓ , of ⟨G ⟩

[m,n]

ℓ , of ⟨G ⟩[m,n] and of ⟨G ⟩
[m,n]

Let T be a triangulated category. Let G ∈ T be an object, and let ℓ,m, n
be integers with ℓ > 0 and with m ≤ n. In the last talk we went through
the construction of four full subcategories of T :

1 ⟨G ⟩[m,n]
ℓ and ⟨G ⟩[m,n]

ℓ . The construction was by induction on the

integer ℓ > 0, starting with ⟨G ⟩[m,n]
1 and ⟨G ⟩[m,n]

1 , which contain all
direct summands of (finite) direct sums of shifts of G in the interval
[m, n].

2 ⟨G ⟩[m,n] and ⟨G ⟩[m,n]
. The shifts allowed were in the interval [m, n],

but then one closed with respect to all extensions, (finite) direct sums
and direct summands.
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Definition (formal definition of (weak) approximability)

Let T be a triangulated category with coproducts. It is
weakly approximable if:

There exists a compact generator G ∈ T , a t–structure (T ≤0, T ≥0), and
an integer A > 0 so that

G⊥ contains T ≤−A ∪ T ≥A.

For every object F ∈ T ≤0 there exists a triangle E −→ F −→ D, with

D ∈ T ≤−1 and with E ∈ ⟨G ⟩[−A,A]
.

The category T is declared approximable if, in the triangle

E −→ F −→ D above, we may assume E ∈ ⟨G ⟩[−A,A]

A .
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The main theorems—sources of examples

1 If T has a compact generator G such that Hom
(
G ,G [i ]

)
= 0 for all

i ≥ 1, then T is approximable.

2 Let X be a quasicompact, quasiseparated scheme, and let Z ⊂ X be
a closed subset with quasicompact complement. Then the category
Dqc,Z (X ) is weakly approximable.

3 Let X be a quasicompact, separated scheme. Then the category
Dqc(X ) is approximable.

4 [Joint with Jesse Burke and Bregje Pauwels]: Suppose we are given a
recollement of triangulated categories

R // Soooo // Toooo

with R and T approximable. Assume further that the category S is
compactly generated, and any compact object H ∈ S has the
property that Hom

(
H,H[i ]

)
= 0 for i ≫ 0. Then the category S is

also approximable.
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References for the fact(s) that the nontrivial examples of
(weakly) approximable triangulated categories really are
examples

Jesse Burke, Amnon Neeman, and Bregje Pauwels, Gluing
approximable triangulated categories,
https://arxiv.org/abs/1806.05342.

Amnon Neeman, Strong generators in Dperf(X ) and Db
coh(X ), Ann. of

Math. (2) 193 (2021), no. 3, 689–732.

Amnon Neeman, Bounded t–structures on the category of perfect
complexes, https://arxiv.org/abs/2202.08861.
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We remind the reader what the terms used in the theorems mean.

Some old definitions

Let S be a triangulated category, and let G ∈ S be an object.

G is a classical generator if S = ⟨G ⟩(−∞,∞).

G is a strong generator if there exists an integer ℓ > 0 with

S = ⟨G ⟩(−∞,infty)
ℓ . The category S is strongly generated if there

exists a strong generator G ∈ S.
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The main theorems

1 Let X be a quasicompact, separated scheme. The category Dperf(X )
is strongly generated if and only if X has an open cover by affine
schemes Spec(Ri ), with each Ri of finite global dimension.

2 Let X be a finite-dimensional, separated, quasiexcellent noetherian
scheme. Then the category Db

coh(X ) is strongly generated.
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Proof of strong generation

The main point is that approximability allows us to easily reduce to Kelly’s
old theorem. We first remind the reader of Kelly’s theorem and its proof.

Theorem (Kelly, 1965)

Suppose R is a ring, and D(R) its derived category. Let n ≥ 0 be an
integer, and let F ∈ D(R) be an object so that the projective dimension of

H i (F ) is ≤ n for all i ∈ Z. Then F ∈ ⟨R⟩(−∞,∞)

n+1 .

Before proving the theorem we remind the reader: any morphism
P −→ H i (E ) in D(R), for any projective R–module P and any E ∈ D(R),
lifts (uniquely up to homotopy) to a cochain map

· · · // 0

��

// 0

��

// P

��

// 0

��

// 0

��

// · · ·

· · · // E i−2 // E i−1 // E i // E i+1 // E i+2 // · · ·
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Proof of Kelly’s theorem. We prove this by induction on n. Suppose
first that n = 0; hence H i (F ) is projective for every i ∈ Z. The identity
map H i (F ) −→ H i (F ) lifts to a cochain map

· · · // 0

��

// 0

��

// H i (F )

��

// 0

��

// 0

��

// · · ·

· · · // F i−2 // F i−1 // F i // F i+1 // F i+2 // · · ·

and when we combine, for every i ∈ Z, we obtain a cochain map

· · · // H−2(F )

��

0 // H−1(F )

��

0 // H0(F )

��

0 // H1(F )

��

0 // H2(F )

��

// · · ·

· · · // F−2 // F−1 // F 0 // F 1 // F 2 // · · ·

This is an isomorphism in cohomology, hence an isomorphism in D(R).

Exhibiting an isomorphism of F with an object in ⟨R⟩(−∞,∞)

1 .
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Now suppose n ≥ 0, and we know the result for every ℓ with 0 ≤ ℓ ≤ n.
We wish to show it for n + 1. Suppose therefore that we are given an
object F ∈ D(R) with H i (F ) of projective dimension ≤ n + 1 for every i .
Choose for every i a projective module P i and a surjection P i −→ H i (F ),
and form the corresponding cochain map

· · · // 0

��

// 0

��

// P i

��

// 0

��

// 0

��

// · · ·

· · · // F i−2 // F i−1 // F i // F i+1 // F i+2 // · · ·

and combine over i to form

· · · // P−2

��

0 // P−1

��

0 // P0

��

0 // P1

��

0 // P2

��

// · · ·

· · · // F−2 // F−1 // F 0 // F 1 // F 2 // · · ·
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This gives a map P −→ F , which we complete to a triangle
P −→ F −→ Q. By construction, the map H i (P) −→ H i (F ) is surjective
for every i ∈ Z, giving short exact sequences

0 // H i−1(Q) // H i (P) // H i (F ) // 0

Hence H i (Q) is of projective dimension ≤ n.

Thus P ∈ ⟨R⟩(−∞,∞)

1 and Q ∈ ⟨R⟩(−∞,∞)

n+1 , and the triangle
P −→ F −→ Q tells us that

F ∈ ⟨R⟩(−∞,∞)

1 ∗ ⟨R⟩(−∞,∞)

n+1 ⊂ ⟨R⟩(−∞,∞)

n+2 .
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Lemma

Let X be a quasicompact, separated scheme, let G ∈ Dqc(X ) be a
compact generator, and let u : U −→ X be an open immersion with U

quasicompact. Then the object Ru∗OU ∈ Dqc(X ) belongs to ⟨G ⟩[−n,n]

n

for some integer n > 0.

Proof.

It is relatively easy to show that there exists an integer ℓ > 0 with
Hom

(
Ru∗OU , Dqc(X )≤−ℓ

)
= 0. By the approximability of Dqc(X ) we

may choose an integer n and a triangle E −→ Ru∗OU −→ D with

D ∈ Dqc(X )≤−ℓ and E ∈ ⟨G ⟩[−n,n]

n .

But the map Ru∗OU −→ D must vanish by the choice of ℓ, making

Ru∗OU a direct summand of the object E ∈ ⟨G ⟩[−n,n]

n .
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It is relatively easy to show that there exists an integer ℓ > 0 with
Hom

(
Ru∗OU , Dqc(X )≤−ℓ

)
= 0. By the approximability of Dqc(X ) we

may choose an integer n and a triangle E −→ Ru∗OU −→ D with

D ∈ Dqc(X )≤−ℓ and E ∈ ⟨G ⟩[−n,n]

n .

But the map Ru∗OU −→ D must vanish by the choice of ℓ, making

Ru∗OU a direct summand of the object E ∈ ⟨G ⟩[−n,n]

n .
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Sketch of how strong generation follows from the Lemma

Let X be a quasicompact, separated scheme. By hypothesis we may cover
X by open subsets Ui = Spec(Ri ) with each Ri of finite global dimension.
By the quasicompactness we may choose finitely many Ui which cover.
The Lemma tells us that we may choose a compact generator G ∈ Dqc(X )
and an integer n so that

Rui∗OUi
∈ ⟨G ⟩[−n,n]

n ⊂ ⟨G ⟩(−∞,∞)

n

for every i in the finite set.

Since Ri is of finite global dimension, Kelly’s 1965 theorem tells us that

we may choose an integer ℓ > 0 so that Dqc(Ui ) ⊂ ⟨Oi ⟩
(−∞,∞)

ℓ . It follows
that

Rui∗Dqc(Ui ) ⊂ ⟨Rui∗Oi ⟩
(−∞,∞)

ℓ ⊂ ⟨G ⟩(−∞,∞)

ℓn
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Sketch of how strong generation follows from the Lemma—continued

It’s an exercise to show that Dqc(X ) can be generated from the
subcategories Rui∗Dqc(Ui ) in finitely many steps. Hence there exists an

integer N with Dqc(X ) = ⟨G ⟩(−∞,∞)

N .

We have proved a statement about Dqc(X ), and Dperf(X ) ⊂ Dqc(X ) is
the subcategory of compact objects. Standard compactness arguments

give that Dperf(X ) = ⟨G ⟩(−∞,∞)
N , which is strong generation.
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Next another reminder from Talk 1.

Definition (equivalent t–structures)

Let T be any triangulated category, and let
(
T ≤0
1 , T ≥0

1

)
and

(
T ≤0
2 , T ≥0

2

)
be two t–structures on T . We declare them equivalent if the metrics they
induce are equivalent.

To spell it out: the two t–structures are equivalent if there exists an
integer A > 0 with

T ≤−A
1 ⊂ T ≤0

2 ⊂ T ≤A
1 .
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Preferred t–structures

Let T be a triangulated category with coproducts, and let G ∈ T be a
compact object. A 2003 theorem of Alonso, Jereḿıas and Souto teaches
us that T has a unique t–structure

(
T ≤0
G , T ≥0

G

)
generated by G .

More precisely the following formula delivers a t–structure:

T ≤0
G = ⟨G ⟩(−∞,0]

, T ≥0
G =

([
T ≤0
G

]⊥)
[1] .

If G and H are two compact generators for T , then the t–structures(
T ≤0
G , T ≥0

G

)
and

(
T ≤0
H , T ≥0

H

)
are equivalent.

We say that a t–structure
(
T ≤0, T ≥0

)
is in the

preferred equivalence class if it is equivalent to(
T ≤0
G , T ≥0

G

)
for some compact generator G ,

hence for every compact generator.
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Structure theorems

Theorem

Let T be a triangulated category with coproducts.
Suppose we are given a compact generator G ∈ T , a t–structure
(T ≤0, T ≥0), and an integer A > 0 such that the hypotheses of weak
approximability are satisfied.

To spell it out:

G⊥ contains T ≤−A ∪ T ≥A.

For every object F ∈ T ≤0 there exists a triangle E −→ F −→ D, with

D ∈ T ≤−1 and E ∈ ⟨G ⟩[−A,A]
.

Then the t–structure (T ≤0, T ≥0) is in the preferred equivalence class.

Amnon Neeman (ANU) Triangulated categories via metric techniques, 3 24 March 2023 50 / 126



Structure theorems

Theorem

Let T be a triangulated category with coproducts.
Suppose we are given a compact generator G ∈ T , a t–structure
(T ≤0, T ≥0), and an integer A > 0 such that the hypotheses of weak
approximability are satisfied.

To spell it out:

G⊥ contains T ≤−A ∪ T ≥A.

For every object F ∈ T ≤0 there exists a triangle E −→ F −→ D, with

D ∈ T ≤−1 and E ∈ ⟨G ⟩[−A,A]
.

Then the t–structure (T ≤0, T ≥0) is in the preferred equivalence class.

Amnon Neeman (ANU) Triangulated categories via metric techniques, 3 24 March 2023 50 / 126



Structure theorems

Theorem

Let T be a triangulated category with coproducts.
Suppose we are given a compact generator G ∈ T , a t–structure
(T ≤0, T ≥0), and an integer A > 0 such that the hypotheses of weak
approximability are satisfied.

To spell it out:

G⊥ contains T ≤−A ∪ T ≥A.

For every object F ∈ T ≤0 there exists a triangle E −→ F −→ D, with

D ∈ T ≤−1 and E ∈ ⟨G ⟩[−A,A]
.

Then the t–structure (T ≤0, T ≥0) is in the preferred equivalence class.

Amnon Neeman (ANU) Triangulated categories via metric techniques, 3 24 March 2023 50 / 126



Theorem

Let T be a weakly approximable triangulated category. Suppose we are
given a compact generator G ∈ T , and a t–structure (T ≤0, T ≥0) in the
preferred equivalence class.

Then there exists an integer A > 0 such that the hypotheses of weak
approximability are safisfied.

To spell it out:

G⊥ contains T ≤−A ∪ T ≥A.

For every object F ∈ T ≤0 there exists a triangle E −→ F −→ D, with

D ∈ T ≤−1 and E ∈ ⟨G ⟩[−A,A]
.

Assume furthermore that T is approximable. Then the integer A may
be chosen so that the stronger hypotheses of approximability are
satisfied. To spell it out: in the triangle E −→ F −→ D above, we

have E ∈ ⟨G ⟩[−A,A]

A .
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Theorem

Let T be a weakly approximable triangulated category. Suppose we are
given a compact generator G ∈ T , a t–structure (T ≤0, T ≥0) and an
integer A > 0 such that

G⊥ contains T ≤−A ∪ T ≥A.

For every object F ∈ T ≤0 there exists a triangle E −→ F −→ D, with

D ∈ T ≤−1 and E ∈ ⟨G ⟩[−A,A]
.

Suppose the integer A was chosen so that, in the triangle

E −→ F −→ D above, we can guarantee E ∈ ⟨G ⟩[−A,A]

A .

Then for any object F ∈ T ≤0 and every integer m > 0, there exists a
triangle Em −→ F −→ Dm with Dm ∈ T ≤−m and with

Em ∈ ⟨G ⟩[−A−m+1,A]
.
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‘
Given a t–structure

(
T ≤0, T ≥0

)
it is customary to define the categories

T − =
⋃
n

T ≤n , T + =
⋃
n

T ≥−n , T b = T − ∩ T +

It’s obvious that equivalent t–structures yield identical T −, T + and T b.

Now assume that T has coproducts and there exists a single compact
generator G . Then there is a preferred equivalence class of t–structures,
and a correponding preferred T −, T + and T b. These are intrinsic, they’re
independent of any choice. In the remainder of the slides we only consider
the “preferred” T −, T + and T b.
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Definition (the subtler categories T b
c ⊂ T −

c )

Let T be a triangulated category with coproducts, and assume it has a
compact generator G . Choose a t–structure

(
T ≤0, T ≥0

)
in the preferred

equivalence class.

Heuristic: the full subcategory T −
c should be thought of as the closure of

T c with respect to the metric—every object of T −
c admits arbitrarily good

approximations by compacts.

To spell it out more formally:

T −
c =

F ∈ T

∣∣∣∣∣∣
For every ε > 0 there exists a morphism

φ : E −→ F
with E compact and Length(φ) < ε


We furthermore define T b

c = T b ∩ T −
c .

It’s obvious that the category T −
c is intrinsic. As

T −
c and T b are both intrinsic, so is their intersection T b

c .
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We have defined all this intrinsic structure, assuming only that T is a
triangulated category with coproducts and with a single compact
generator. In this generality we know that the subcategories T −, T + and
T b are thick.

If we furthermore assume that T is weakly approximable, then the
subcategories T −

c and T b
c are also thick.
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Theorem

Let T be a weakly approximable triangulated category. Suppose we are
given a compact generator G ∈ T and a t–structure (T ≤0, T ≥0) in the
preferred equivalence class.

There exists an integer B > 0 such that

For every object F ∈
[
T −
c

]≤0
and every integer m > 0, there exists a

triangle Em −→ F −→ Dm, with Dm ∈
[
T −
c

]≤−m
and

E ∈ ⟨G ⟩[−B−m+1,B].

Suppose our category T is approximable. Then the integer B above
may be chosen so that, in the triangles Em −→ F −→ Dm above, we

can guarantee Em ∈ ⟨G ⟩[−B−m+1,B]
mB .
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It can be computed that:

Example (The special case T = D(R), with R a coherent ring)

T + = D+(R), T − = D−(R), T c = Db(R–proj),
T b = Db(R), T −

c = D−(R–proj), T b
c = Db(R–mod)

Example (The special case T = Dqc,Z (X ), with X a coherent scheme
and Z ⊂ X a closed subset with quasicompact complement)

T + = D+
qc,Z (X ), T − = D−

qc,Z (X ), T c = Dperf
Z (X ),

T b = Db
qc,Z (R), T −

c = D−
coh,Z (X ), T b

c = Db
coh,Z (X )

The coherence hypothesis isn’t essential. If X is quasicompact and
quasiseparated, and if Z ⊂ X is a closed subset with quasicompact
complement, the formulas remain true with Db(R–mod), D−

coh,Z (X ) and

Db
coh,Z (X ) suitably interpreted.
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Analogue to keep in mind, for what’s coming

Consider the space S of Lebesgue measurable real-valued functions on R.
The pairing taking f , g ∈ S to

⟨f , g⟩ =
∫

fg dµ

is a map

S × S
⟨−,−⟩ // R ∪ {∞}.

If f ∈ Lp and g ∈ Lq, with 1
p + 1

q = 1, then ⟨f , g⟩ ∈ R

and we deduce two maps,which turn out to be isometries

Lp // Hom(Lq,R), Lq // Hom(Lp,R)
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Let R be a commutative ring, and assume T is an R-linear category. The
pairing sending A,B ∈ T to Hom(A,B) gives a map

T op × T // R–Mod

and we deduce two ordinary Yoneda maps

T // HomR

(
T op , R–Mod

)
T op // HomR

(
T , R–Mod

)
If T is also an approximable triangulated category, we can restrict to
obtain restricted Yoneda maps

1

T −
c

Y // HomR

([
T c

]op
, R–Mod

)
2 [

T −
c

]op Ỹ // HomR

(
T b
c , R–Mod

)
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Theorem (first general theorem about approximable categories)

Let R be a commutative, noetherian ring, and let T be an R–linear,
approximable triangulated category. Suppose there exists in T a compact
generator G so that Hom

(
G ,G [n]

)
is a finite R–module for all n ∈ Z.

Consider the functors

T b
c
� � i // T −

c
Y // HomR

(
[T c ]op , R–Mod

)
[
T c

]op � � ı̃ //
[
T −
c

]op Ỹ // HomR

(
T b
c , R–Mod

)
where i and ı̃ are the obvious inclusions. Then the following is almost true:

1 The functor Y and Ỹ are both full, and the essential images are the
locally finite homological functors.

2 The composites Y ◦ i and Ỹ ◦ ı̃ are both fully faithful, and the
essential images are the finite homological functors.

More precisely: the assertions about the functors Y and Y ◦ i are true as
stated.
For the assertions about Ỹ and Ỹ ◦ ı̃, we need to add the hypothesis that

there exists an object H ∈ T b
c and an integer N > 0 with ⟨H⟩(−∞,∞)

N = T .
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A homological functor H : T −
c −→ R–Mod is locally finite if, for every

object C , the R–module Hn(C ) is finite for every n ∈ Z and vanishes if
n ≫ 0 or n ≪ 0
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1 The functor Y and Ỹ are both full, and the essential images are the
locally finite homological functors.

2 The composites Y ◦ i and Ỹ ◦ ı̃ are both fully faithful, and the
essential images are the finite homological functors.

A homological functor H : T −
c −→ R–Mod is locally finite if, for every

object C , the R–module Hn(C ) is finite for every n ∈ Z and vanishes if
n ≫ 0 or n ≪ 0

Amnon Neeman (ANU) Triangulated categories via metric techniques, 3 24 March 2023 81 / 126



What was known before

Theorem

Let R be a commutative, noetherian ring, and let S be an R-linear
triangulated category. Assume

1 The category S has a strong generator. This means: there exists an
object G ∈ S and an integer N > 0 with ⟨G ⟩N = S.

2 For any pair of objects X ,Y ∈ S we have that Hom(X ,Y ) is a finite
R-module, and Hom(X ,Y [n]) vanishes for all but finitely many n.

Then every finite homological functor F : S −→ R–mod is representable.

Alexei I. Bondal and Michel Van den Bergh, Generators and
representability of functors in commutative and noncommutative
geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258.

Raphaël Rouquier, Dimensions of triangulated categories, J. K-Theory
1 (2008), no. 2, 193–256.

Amnon Neeman (ANU) Triangulated categories via metric techniques, 3 24 March 2023 82 / 126



What was known before, continued

In the special case where T = Dqc(X ) with X projective over a field k , we
had:

Summary

Bondal and Van den Bergh proved, in the paper cited on the previous
slide, that every finite k–linear homological functor on

[
Dperf(X )

]op
is of the form (Y ◦ i)(B) = Hom(−,B) for some B ∈ Db

coh(X ).

Rouquier claims, in the article cited on the previous slide, that every
finite k–linear homological functor on Db

coh(X ) is of the form

(Ỹ ◦ ı̃)(A) = Hom(A,−) for some A ∈ Dperf(X ).
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Application

Let X be a scheme proper over a noetherian ring R. Then T = Dqc(X )
satisfies the hypotheses of the theorem.

Corollary

The functor

Db
coh(X )

Y◦i // HomR

([
Dperf(X )

]op
, R–Mod

)
gives an equivalence of Db

coh(X ) with the category of finite homological
functors

[
Dperf(X )

]op −→ R–Mod.

Amnon Neeman (ANU) Triangulated categories via metric techniques, 3 24 March 2023 84 / 126



Why does one care about such representability theorems?

Suppose X is a scheme proper over a noetherian ring R.

Let L : Db
coh(X ) −→ Db

coh(X
an) be the analytification functor.

Now consider the pairing taking A ∈ Dperf(X ) and B ∈ Db
coh(X

an) to the
R–module

Hom
Db

coh(X
an)

(
L(A) , B

)
More precisely: above we have written a functor taking ? ∈ Db

coh(X
an) to

a finite homological functor
[
Dperf(X )

]op −→ R–mod.

Db
coh(X

an)
--

R

��

HomR

([
Dperf(X )

]op
, R–Mod

)
Db

coh(X )

11
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coh(X

an) to the
R–module

Hom
Db

coh(X
an)

(
L(A) , B

)
The above delivers a map taking B ∈ Db

coh(X
an) to a

finite homological functor
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Dperf(X )

]op −→ R–mod.
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Representablity produced for us a functor R : Db
coh(X

an) −→ Db
coh(X ).

The construction gives us, for every pair of objects A ∈ Dperf(X ) and
B ∈ Db

coh(X
an), a natural isomorphism

Hom
(
L(A),B

) ∼= Hom
(
A,R(B)

)
.

For any pair of objects A ∈ Dperf(X ), B ∈ Db
coh(X ) we deduce a natural

map

Hom(A,B) // Hom
(
L(A),L(B)

)
// Hom

(
A,RL(B)

)
which must be induced by a unique morphism η : B −→ RL(B).

This allows us to define, for any pair of objects A ∈ Db
coh(X ) and

B ∈ Db
coh(X

an), a natural composite

Hom
(
L(A),B

)
// Hom

(
RL(A),R(B)

) Hom(η,−) // Hom
(
A,R(B)

)
Amnon Neeman (ANU) Triangulated categories via metric techniques, 3 24 March 2023 92 / 126



Representablity produced for us a functor R : Db
coh(X

an) −→ Db
coh(X ).

The construction gives us, for every pair of objects A ∈ Dperf(X ) and
B ∈ Db

coh(X
an), a natural isomorphism

Hom
(
L(A),B

) ∼= Hom
(
A,R(B)

)
.

For any pair of objects A ∈ Dperf(X ), B ∈ Db
coh(X ) we deduce a natural

map

Hom(A,B) // Hom
(
L(A),L(B)

)
// Hom

(
A,RL(B)

)
which must be induced by a unique morphism η : B −→ RL(B).

This allows us to define, for any pair of objects A ∈ Db
coh(X ) and

B ∈ Db
coh(X

an), a natural composite

Hom
(
L(A),B

)
// Hom

(
RL(A),R(B)

) Hom(η,−) // Hom
(
A,R(B)

)
Amnon Neeman (ANU) Triangulated categories via metric techniques, 3 24 March 2023 93 / 126



Representablity produced for us a functor R : Db
coh(X

an) −→ Db
coh(X ).

The construction gives us, for every pair of objects A ∈ Dperf(X ) and
B ∈ Db

coh(X
an), a natural isomorphism

Hom
(
L(A),B

) ∼= Hom
(
A,R(B)

)
.

For any pair of objects A ∈ Dperf(X ), B ∈ Db
coh(X ) we deduce a natural

map

Hom(A,B) // Hom
(
L(A),L(B)

)
// Hom

(
A,RL(B)

)
which must be induced by a unique morphism η : B −→ RL(B).

This allows us to define, for any pair of objects A ∈ Db
coh(X ) and

B ∈ Db
coh(X

an), a natural composite

Hom
(
L(A),B

)
// Hom

(
RL(A),R(B)

) Hom(η,−) // Hom
(
A,R(B)

)
Amnon Neeman (ANU) Triangulated categories via metric techniques, 3 24 March 2023 94 / 126



Representablity produced for us a functor R : Db
coh(X

an) −→ Db
coh(X ).

The construction gives us, for every pair of objects A ∈ Dperf(X ) and
B ∈ Db

coh(X
an), a natural isomorphism

Hom
(
L(A),B

) ∼= Hom
(
A,R(B)

)
.

For any pair of objects A ∈ Dperf(X ), B ∈ Db
coh(X ) we deduce a natural

map

Hom(A,B) // Hom
(
L(A),L(B)

)
// Hom

(
A,RL(B)

)
which must be induced by a unique morphism η : B −→ RL(B).

This allows us to define, for any pair of objects A ∈ Db
coh(X ) and

B ∈ Db
coh(X

an), a natural composite

Hom
(
L(A),B

)
// Hom

(
RL(A),R(B)

) Hom(η,−) // Hom
(
A,R(B)

)
Amnon Neeman (ANU) Triangulated categories via metric techniques, 3 24 March 2023 95 / 126



Representablity produced for us a functor R : Db
coh(X

an) −→ Db
coh(X ).

The construction gives us, for every pair of objects A ∈ Dperf(X ) and
B ∈ Db

coh(X
an), a natural isomorphism

Hom
(
L(A),B

) ∼= Hom
(
A,R(B)

)
.

For any pair of objects A ∈ Dperf(X ), B ∈ Db
coh(X ) we deduce a natural

map

Hom(A,B) // Hom
(
L(A),L(B)

)
// Hom

(
A,RL(B)

)
which must be induced by a unique morphism η : B −→ RL(B).

This allows us to define, for any pair of objects A ∈ Db
coh(X ) and

B ∈ Db
coh(X

an), a natural composite

Hom
(
L(A),B

)
// Hom

(
RL(A),R(B)

) Hom(η,−) // Hom
(
A,R(B)

)
Amnon Neeman (ANU) Triangulated categories via metric techniques, 3 24 March 2023 96 / 126



Now every object A ∈ Db
coh(X ) can be approximated, to within arbitrary

ε > 0, by objects Aε ∈ Dperf(X ). Recall: this means there exist morphisms
f : Aε −→ A with Length(f ) < ε.

For fixed B and ε small enough, the induced vertical maps in the diagram
below are isomorphisms

Hom
(
L(A),B

)
//

≀
��

Hom
(
A,R(B)

)
≀
��

Hom
(
L(Aε),B

) ∼ // Hom
(
Aε,R(B)

)
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For a unified proof of the GAGA theorems it suffices to show that, in the
adjunction L ⊣ R, the unit and counit of adjuction are isomorphisms.

To prove that the unit is an isomorphism it suffices to find a set of objects
P ∈ Db

coh(X ), such that Hom(P,−) takes the unit η : id −→ RL to an
isomorphism, and such that P⊥ = 0.

Let the counit of adjunction be denoted e : LR −→ id. If we could
guarantee that L(P)⊥ = 0, then we’d be done—meaning it would formally
follow that e : LR −→ id is an isomorphism.

The point is that the composite

R ηR // RLR Re // R

is the identity, and hence Hom(p,−) takes it to the identity for all p ∈ P.
Now Hom(p, ηR) is an isomorphism because η is already known to be an
isomorphism, forcing Hom(p,Re) = Hom

(
L(p), e

)
to be an isomorphism.
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Summarizing: it suffices to produce a set of objects P ⊂ Dperf(X ), with
P[1] = P and such that

1 P⊥ = {0}.
2 L(P)⊥ = {0}.
3 For every object p ∈ P and every object x ∈ Db

coh(X ), the natural
map

Hom(p, x) // Hom
(
L(p) ,L(x)

)
is an isomorphism.

But this is easy: we let P be the collection of perfect complexes supported
at closed points.
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Jack Hall, GAGA theorems, to appear in Journal de Mathématiques
Pures et Appliquées.
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Theorem (reminder: theorem of the second talk)

Let S be a triangulated category with a good metric. In Talk 2 we defined
categories

S(S) ⊂ L(S) .

We also defined the distinguished triangles in S(S) to be the colimits in
S(S) ⊂ Mod–S of Cauchy sequences of distinguished triangles in S.

With this definition of distinguished triangles, the category S(S) is
triangulated.
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Theorem (second general theorem about weakly approximable
categories)

Let T be a weakly approximable triangulated category. Then T has a
preferred equivalence class of norms, giving preferred equivalence classes of
good metrics on its subcategories T c and T b

c . For the metrics on T c we
have

S(T c) = T b
c .

If furthermore T is coherent, then for the metrics on
[
T b
c

]op
we have

S
([

T b
c

]op)
=

[
T c

]op
.

Coherent triangulated categories

A weakly approximable triangulated category is coherent if, in the
preferred equivalence class, there is a t–structure

(
T ≤0, T ≥0

)
such that(

T −
c ∩ T ≤0 , T −

c ∩ T ≥0
)

is a t–structure on T −
c .

Amnon Neeman (ANU) Triangulated categories via metric techniques, 3 24 March 2023 108 / 126



Theorem (second general theorem about weakly approximable
categories)

Let T be a weakly approximable triangulated category. Then T has a
preferred equivalence class of norms, giving preferred equivalence classes of
good metrics on its subcategories T c and T b

c . For the metrics on T c we
have

S(T c) = T b
c .

If furthermore T is coherent, then for the metrics on
[
T b
c

]op
we have

S
([

T b
c

]op)
=

[
T c

]op
.

Coherent triangulated categories

A weakly approximable triangulated category is coherent if, in the
preferred equivalence class, there is a t–structure

(
T ≤0, T ≥0

)
such that(

T −
c ∩ T ≤0 , T −

c ∩ T ≥0
)

is a t–structure on T −
c .

Amnon Neeman (ANU) Triangulated categories via metric techniques, 3 24 March 2023 109 / 126



The case T = D(R)

Let R be any ring and let T = D(R). Then

T c = Db(R–proj), T b
c = Db(R–mod).

The theorem now gives

S
[
Db(R–proj)

]
= Db(R–mod)

If the ring R is assumed coherent, then one also has

S
([

Db(R–mod)
]op)

=
[
Db(R–proj)

]op
.
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The case T = Dqc,Z (X )

Let X be a quasicompact, quasiseparated scheme, and let Z ⊂ X be a
closed subset with quasicompact complement. Then

T c = Dperf
Z (X ), T b

c = Db
coh,Z (X )

The theorem now gives

S
[
Dperf

Z (X )
]
= Db

coh,Z (X ).

If we add the assumption that the scheme X is coherent, then one also has

S
([

Db
coh,Z (X )

]op)
=

[
Dperf

Z (X )
]op

.
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Another approach

Henning Krause, Completing perfect complexes, Math. Z. 296 (2020),
no. 3-4, 1387–1427, With appendices by Tobias Barthel, Bernhard
Keller and Krause.

The metric we used on T c has Bn = T c ∩ T ≤−n.

The metric in Krause’s paper has Bn = T c ∩
(
T ≤−n ∗ T ≥n

)
Where T ≤−n ∗ T ≥n is defined by

T ≤−n ∗ T ≥n =

{
Y ∈ T

∣∣∣∣ there exists a triangle X −→ Y −→ Z
with X ∈ T ≤−n and with Z ∈ T ≥n

}
.
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And now for a totally different example

Example

Let T be the homotopy category of spectra. Then T is approximable and
coherent.

For the purpose of the formulas that are about to come: πi (t) stands for
the ith stable homotopy group of the spectrum t. It can be computed that

1

T − = {t ∈ T | πi (t) = 0 for i ≪ 0}
2

T + = {t ∈ T | πi (t) = 0 for i ≫ 0}
3

T b =

{
t ∈ T

∣∣∣∣ πi (t) = 0 for all but
finitely many i ∈ N

}
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4 T c is the subcategory of finite spectra.

5

T −
c =

{
t ∈ T

∣∣∣∣ πi (t) = 0 for i ≪ 0, and
πi (t) is a finite Z–module for all i ∈ Z

}
6

T b
c =

{
t ∈ T

∣∣∣∣ πi (t) = 0 for all but finitely many i ∈ Z, and
πi (t) is a finite Z–module for all i ∈ Z

}

The general theory applies, telling us (for example)

S(T c) = T b
c , S

([
T b
c

]op)
=

[
T c

]op
.
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It is a theorem of Schwede that the category T c , that is the homotopy
category of finite spectra, has a unique enhancement.

The reference is:

Stefan Schwede, The stable homotopy category is rigid, Ann. of Math.
(2) 166 (2007), no. 3, 837–863.

Combining this with the results above

S(T c) = T b
c , S

([
T b
c

]op)
=

[
T c

]op
,

we deduce that the category T b
c also has a unique enhancement.
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Amnon Neeman, Strong generators in Dperf(X ) and Db
coh(X ), Ann. of

Math. (2) 193 (2021), no. 3, 689–732.

Amnon Neeman, Triangulated categories with a single compact
generator and a Brown representability theorem,
https://arxiv.org/abs/1804.02240.

Amnon Neeman, The category
[
T c

]op
as functors on T b

c ,
https://arxiv.org/abs/1806.05777.

Amnon Neeman, The categories T c and T b
c determine each other,

https://arxiv.org/abs/1806.06471.
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Thank you!
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