htweight Secure
Computation from Any
ure OLE

-|lan University)

e (Cornell Tech)

an Venkitasubramaniam
ornell Tech)

Secure Computation

How is a function represented?
Classically, Boolean circuits [Yao86, GMWS87,...]

Dl
>Q__I__

Arithmetic Computation

* Many computations are done over an arbitrary field [
* Mixing arithmetic with Boolean, e.g. machine learning

e Arithmetic computation with “non-arithmetic” inputs,
bit decomposition [LPSY15]

* Notable examples:
* SHA-256
* Threshold cryptography [BF97, Gil99...]
* Machine learning [LPOO,..., JVC18, MR18, WCG18]
e Pattern matching [HLOS, HT10, ...,KRT17]
* Even BMR garbling [LPSY15,...]

Output

(a+b)xbxc

This Talk

* Two-party
* Active security
e Arithmetic circuits for any field

(a+b)xbxc

This Talk

* Two-party
* Active security
e Arithmetic circuits for any field

4 N

Motivating question:
Overhead for active security
given black-box access to

Kany passive secure OLE implemy

Inputs

(a+b)xbxc

What is OLE?

Oblivious linear evaluation (OLE)

sender receiver

a,b € F X € [F

ax+b

Current Approaches to Practical Arithmetic 2PC

1. 2PCin the OLE-hybrid [GMWS87, IPS09, DGNNR17]
* Black-box calls to OLE

2. 2PCin the OT-hybrid [Gil99, KOS16, FPY18]
* Black-box calls to OT

3. 2PC based on semi-homomorphic encryption
[BDOZ11, DPSZ12, KPR18]

Current Approaches to Practical Arithmetic 2PC

()

1. 2PCin the OLE-hybrid [GMW87, IPS09, DGNNR17] 22 calls to

 Black-box calls to OLE . active OLE)

2. 2PCin the OT-hybrid [Gil99, KOS16, FPY18]
* Black-box calls to OT

3. 2PC based on semi-homomorphic encryption
[BDOZ11, DPSZ12, KPR18]

Current Approaches to Practical Arithmetic 2PC

()
1. 2PCin the OLE-hybrid [GMW87, IPS09, DGNNR17] 22 calls to
* Black-box calls to OLE . active OLE)
: : : 4)
2. 2PCin the OT-hybrid [Gil99, KOS16, FPY18] 6 log(|) calls to
* Black-box calls to OT active OT
\ y,

3. 2PC based on semi-homomorphic encryption
[BDOZ11, DPSZ12, KPR18]

Current Approaches to Practical Arithmetic 2PC

()
1. 2PCin the OLE-hybrid [GMWS87, IPS09, DGNNR17] 22 calls to
e Black-box calls to OLE . active OLE)
()
2. 2PCin the OT-hybrid [Gil99, KOS16, FPY18] 6 log(|F|) calls to
* Black-box calls to OT active OT
* Requires bit-decomposition _ Yy

3. 2PC based on semi-homomorphic encryption
[BDOZ11, DPSZ12, KPR18]

Current Approaches to Practical Arithmetic 2PC

()
1. 2PCin the OLE-hybrid [GMWS87, IPS09, DGNNR17] 22 calls to
* Black-box calls to OLE . active OLE)
. . . (\
2. 2PCin the OT-hybrid [Gil99, KOS16, FPY18] 6 log(|F|) calls to
* Black-box calls to OT active OT
* Requires bit-decomposition _ Yy
3. 2PC based on semi-homomorphic encryption - N
[BDOZ11, DPSZ12, KPR18] 9 kbit per
auth. triple

\. J

Current Approaches to Practical Arithmetic 2PC

1. 2PCin the OLE-hybrid [GMW87, IPS09, DGNNR17]
e Black-box calls to OLE

2. 2PCin the OT-hybrid [Gil99, KOS16, FPY18]
* Black-box calls to OT
* Requires bit-decomposition

3. 2PC based on semi-homomorphic encryption
[BDOZ11, DPSZ12, KPR18]

e Optimizing lattice based construction

r

~

22 calls to
active OLE
g J
4 N
6 log(|IF]) calls to
active OT
" y,
4 N
9 kbit per
auth. triple
\ y,

Current Approaches to Practical Arithmetic 2PC

-

1. 2PCin the OLE-hybrid [GMW87, IPS09, DGNNR17]
e Black-box calls to OLE

_

~

J

2. 2PCin the OT-hybrid [Gil99, KOS16, FPY18]
* Black-box calls to OT
* Requires bit-decomposition

3. 2PC based on semi-homomorphic encryption
[BDOZ11, DPSZ12, KPR18]

e Optimizing lattice based construction

r

~

22 calls to
active OLE
g J
4 N
6 log(|IF]) calls to
active OT
" y,
4 N
9 kbit per
auth. triple
\ y,

Main Result

Theorem 1: Actively secure 2PC for most functions that makes

black-box calls to protocol per multiplication

First efficient implem. of general passive-to-active compiler [ala IPS08]

Center for Research in Applied
Cryptography and Cyber Security

Main Result

Theorem 1: Actively secure 2PC for most functions that makes

black-box calls to protocol per multiplication

First efficient implem. of general passive-to-active compiler [ala IPS08]

Best passive: GMW 2 calls to passive OLE protocol,
For “nice” circuits our communication overhead is 2

hAld
ypgphydyb rity

Main Result

Theorem 1: Actively secure 2PC for most functions that makes

black-box calls to protocol per multiplication

First efficient implem. of general passive-to-active compiler [ala IPS08]

Best passive: GMW 2 calls to passive OLE protocol,
For “nice” circuits our communication overhead is 2

[DGNNR17] makes 22 black-box calls to any active OLE for any function
and 44 calls to specific RS-based passive OLE [GNN17]

Main Result

Theorem 1: Actively secure 2PC for most functions that makes

black-box calls to protocol per multiplication

First efficient implem. of general passive-to-active compiler [ala IPSO8]

Best passive: GMW 2 calls to passive OLE protocol,
For “nice” circuits our communication overhead is 2
[DGNNR17] makes 22 black-box calls to any active OLE for any function

and 44 calls to specific RS-based passive OLE [GNN17]
Corollary [Thm 1]: 16 black-box calls to any passive OLE for auth. triples

Main Result

Theorem 2: that makes black-box calls to

protocol in the batch setting

[GNN17] constructs active OLE via 2 calls to a specific passive OLE
Noisy RS assumption forces communication overhead at least 32 field
elements

Center for Research in Applied
Cryptography and Cyber Security

Black-Box Use of Any Passive OLE

1. More flexibility
* Use any existing approach to passive OLE (e.g., lattice-based,
group-based, code-based, etc.)
 Does not need “ZK friendliness”
o Off-the-shelf software/hardware implementation

2. Bonus feature: “error-correct” weak implem. of passive OLE
efficiently [in progress]
e Constant correctness error (group-based HSS schemes [BGI16])
* Constant privacy error (aggressive params. for lattice-based OLE)

Center for Research in Applied
Cryptography and Cyber Security

Underlying Technique: MPC-in-the-Head [IKOSO7, IPSO8]

Two building blocks:

1. Passive MPC with dishonest majority
* Namely, inner protocol Client C,

2. Active MPC with honest majority / @ \

* Namely, outer protocol Clientc, Client C_

Real protocol execution

Underlying Technique: MPC-in-the-Head .~ < 7

/ Imaginary protocol

Server S, ServerS, Server S,
Two building blocks: “
1. Passive MPC with dishonest majority ~
* Namely, inner protocol Client C,
2. Active MPC with honest majority / @ \

* Namely, outer protocol Clientc, Client C_

' r

Real protocol execution

Center for Research in Applied
Cryptography and Cyber Security

Underlying Technique: MPC-in-the-Head .~ < <

/ Imaginary protocol

Server S, ServerS, Server S,
Two building blocks: g
1. Passive MIPC with dishonest majority ~
* Namely, inner protocol C"Et C
2. Active MPC with honest majority / \

* Namely, outer protocol Clientc, Client C_

®

Real protocol execution

Utilizing best of both worlds!

The [IPS08] Compiler — Outer Protocol

Servers Si S, S,

Clients C M

1

The [IPS08] Compiler — Outer Protocol

Servers S, S

N
"l W

Clients C]_

The [IPS08] Compiler — Outer Protocol

Servers S, S

N
1ja m

Clients C M

1

The [IPSO8] Compiler — Inner Protocol

Implement server’s actions
1. Server’s view is additively shared across clients
2. Any passive protocol for server’s computation
a) GMW in the OT/OLE-hybrid for
Boolean/Arithmetic computation

b) FHE based secure computation
Client C,

?

Client C,

)

The [IPS08] Compiler — Combined Protocol

1. Watchlist Setup
 Obtain random subset of PRG seeds using t-out-
of-n OT (done twice)
2. Views of servers additively shared among clients
3. Emulate servers actions via inner protocol

Optimizing the IPS Compiler [LOP11]}

* First work to concretely analyze parameters
* |Improved watchlist mechanism (i.e. reduced #servers)
* Room to improve
 Optimize communication of outer protocol
 Optimize the analysis
* No implementation

The [IPS08] Compiler — Our Instantiations

Outer Protocol — New Optimized Protocol
* Inspired from [AHIV17]

Inner Protocol — [GMWS87]

Our Approach — Improvements the Outer Protocol

» Optimize parameters — new analysis of adaptive
security [AHIV17]

- Batch consistency checks (security with abort)

Our Analysis [AHIV17]

Requirements: deg =t+e + m<n/2 and e < (n-deg)/3
n = #servers, e = #deviations, t = #watchlists,
m = packing factor

Robustness: Probability of affecting correctness
Prob. deviations are not caught= (1-e/n)t
Prob. bad shares are not caught= (e+2)/|F|* + ((2deg+e)/n)t

Efficiency: Number of OLEs per mult. = 2(n/m)

Concrete Parameters

m ¢ t n n/m
1024 | 236 | 469 3922 3.83
2048 | 301 | 616 6521 3.18
4096 | 419 | 778 11409 | 2.78
8192 539 | 1105 | 20730 | 2.53

16384 | 767 | 1455 | 38719 | 2.36
32768 | 1058 | 2015 | 73760 | 2.25
65536 | 1458 | 2831 | 142513 | 2.17
131072 | 2000 | 4034 | 278137 | 2.12
262144 | 2848 | 5574 | 546722 | 2.08
524288 | 3959 | 7928 | 1080119 | 2.06

Outer Protocol for Arithmetic 2PC

e Input sharing phase: Additively share all input wires
e For each layer:
1. Secret share blocks via share packing and send to servers
2. Servers locally add/multiply values
3. Return additive shares of output to clients
4. Degree reduction and rearrange: Apply linear
transformations
o After all computation layers
- Degree test — servers check degree of all input shares
- Permutation test — servers check all rearrangements
e Reveal outputs

lllustration - Active OLE from Passive OLE

‘

dq,dp, ..., dm bl’ bz, ,bm X1, X2, e

\Al,Az,...,An ~ Bl'BZJ""BI’l XlJXZJ""XI’l/

» Xm

lllustration - Active OLE from Passive OLE

s

ali azl Ll am bl’ bz, ,bm Xl; XZ; "';Xm
\A1;A2;"')An ~ Bl'BZJ""Bn Xl’XZJ""Xn/

lllustration - Active OLE from Passive OLE

C=A"-X+B,

» Xm

lllustration - Active OLE from Passive OLE

Ci=A-X+B,
----- .

lllustration - Active OLE from Passive OLE

e -
dq,d2, ..., dmp bl’ bz, ,bm X1y X2y e
\Al,Az,...,An ~ Bl'BZJ""BH XlJXZJ"'JX -~
Cl’ CZ’ 'Cn

C=A"-X+B,

» Xm

Cq) CypereyCp

lllustration - Active OLE from Passive OLE

Rl,Rz,R /
..... :

\,_
al) aZ' Ll am bl' bz, ,bm Xl; XZ;)Xm
\Al,Az,...,An ~ Bl'BZJ""BI’l XlJXZJ ,X -~

c, C,..,C. . — ¢, Cy,...,C

lllustration - Active OLE from Passive OLE

Rl,Rz,R f
. . """ Cn T =R -A
i =Ry AT

- Ry X+
N~ 33 . Bi
al) aZ’) am bl' bz, ,bm Xl; XZ; '")Xm
\A1;A2;"-)An ~ Bl'BZJ'"IBI’l Xl,Xz,...,X /

c, C,..,C. . — ¢, Cy,...,C

On Our Computational Complexity

 Recent results achieve constant computation overhead
[ADINZ17,BCGGHIJ17]

* Our protocol requires log(n) multiplicative overhead
 Not too bad in practice...

Some Implementation Numbers...

mults. Total | Mults. per | # Field | Comm. per
(z) | Time (ms) millisec. elem. | mult. (bits)

1099 78.20 1421 16384 954
2748 175.40 15.74 32768 763
6280 370.40 17 65536 667
13568 732.00 18.73 | 131072 618
28672 1338.00 21.56 | 262144 585
59392 2839.60 21.07 | 524288 564

Summary

1. First efficient implem. of general passive-to-active
compiler [ala IPS08]
2. Active OLE that can instantiated from any passive OLE
3. Implementation!
* Integrating with LWE-based OLE [in progress]

Thank You

Center for Research in Applied
Cryptography and Cyber Security

