
Secure Two-party Threshold
ECDSA from ECDSA Assumptions

Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat

Northeastern University

Elliptic Curve Digital Signature Algorithm

•Digital Signature Algorithm with elliptic curves
• Smaller signature (512 bits) and key sizes (256-bit)
• Security proof in “generic group model”

•Used pervasively in:
• TLS
• DNSSEC
• Cryptocurrencies (Bitcoin, Ethereum, …)

Why Threshold Signatures?

Single Point of Failure for Signer

Distribute Signing Key Among Many Devices

Multi-Signature

n parties

Each party has their own key pair

To sign a message, each party
produces a signature under their
public key …

𝑝𝑘2, 𝑠𝑘2

𝑝𝑘1, 𝑠𝑘1

𝑝𝑘3, 𝑠𝑘3

𝑝𝑘4, 𝑠𝑘4

𝑝𝑘𝑛−1, 𝑠𝑘𝑛−1

𝑝𝑘𝑛, 𝑠𝑘𝑛

Signature: 𝜎1, 𝜎2, … , 𝜎𝑛

• High bandwidth
• Need to produce n signatures

• Major bugs in implementations trying
to reduce bandwidth

• Participating signers publicly known

Why not Multi-Signatures?

t-of-n Threshold Signature Scheme

n parties

Jointly compute a single public key

Each party has a share of the secret key

t parties needed to generate new
signatures

𝑝𝑘

…

Signature: 𝜎

𝑝𝑘, 𝑠𝑘2

𝑝𝑘, 𝑠𝑘1

𝑝𝑘, 𝑠𝑘3

𝑝𝑘, 𝑠𝑘4

𝑝𝑘, 𝑠𝑘𝑛−1

𝑝𝑘, 𝑠𝑘𝑛

2-of-n Threshold Signature Scheme

2-of-n Threshold Signature Scheme

Participation of 2 parties needed to generate new signatures

2-of-n Threshold Signature Scheme

Single users cannot forge a signature

2-of-n Threshold Signature Scheme

Single users cannot forge a signature

2-of-n Threshold Signature Scheme

Single users cannot forge a signature

Handling Corruptions

Handling Corruptions

Adversary can interact with parties

Handling Corruptions

Adversary can interact with parties

Handling Corruptions

Adversary can interact with parties

Handling Corruptions

Adversary still shouldn’t be able to forge a signature

Security Model

Real Ideal

Any Adv in the real world can be mapped to one in the ideal world

ECDSA Functionality
Note: Our functionality
concretely implements the
ECDSA algorithm and is not a
signature algorithm

ECDSA Functionality

init

init

init

init

init

init

ECDSA Functionality

pk

pk

pk
pk

pk

pk

ECDSA Functionality

ECDSA Functionality

m

m

ECDSA Functionality

sig

(Preview) Prior Works on Threshold ECDSA

• Some not proven via real/ideal

• Some have long complex, setup (several minutes), semi-honest

• All need additional assumptions

This Work

•Maliciously secure threshold ECDSA
• 2-round with relaxed definition
• Maliciously secure multiplication with external checks

•No additional assumptions
• Threshold ECDSA scheme from only ECDSA

• Improved efficiency
• ~3 ms to sign

•Open source implementation in Rust

This Talk

•2-of-2 Threshold ECDSA
• Extended to 2-of-n in paper

•Optimizations

Threshold Schnorr

SchnorrSign sk,𝑚 :

Sample instance key 𝑘 ← ℤ𝑞
𝑅 = 𝑘 ⋅ 𝐺

𝑒 = 𝐻 𝑅 ∥ 𝑚

𝜎 = 𝑘 − sk ⋅ 𝑒

Output 𝜎, 𝑒

Threshold Schnorr

SchnorrSign sk,𝑚 :

Sample instance key 𝑘 ← ℤ𝑞
𝑅 = 𝑘 ⋅ 𝐺

𝑒 = 𝐻 𝑅 ∥ 𝑚

𝜎 = 𝑘 − sk ⋅ 𝑒

Output 𝜎, 𝑒

sk = sk𝑎 + sk𝑏
𝑘 = 𝑘𝑎 + 𝑘𝑏

𝜎 = 𝑘 − sk ⋅ 𝑒

𝑘𝑎 + 𝑘𝑏 − sk𝑎 + sk𝑏 ⋅ 𝑒

𝑘𝑎 𝑘𝑏

sk𝑎 sk𝑏
𝑅 = 𝑘𝑎 ⋅ 𝐺 + 𝑘𝑏 ⋅ 𝐺

Threshold Schnorr

SchnorrSign sk,𝑚 :

Sample instance key 𝑘 ← ℤ𝑞
𝑅 = 𝑘 ⋅ 𝐺

𝑒 = 𝐻 𝑅 ∥ 𝑚

𝜎 = 𝑘 − sk ⋅ 𝑒

Output 𝜎, 𝑒

sk = sk𝑎 + sk𝑏
𝑘 = 𝑘𝑎 + 𝑘𝑏

𝑘𝑎 + 𝑘𝑏 − sk𝑎 + sk𝑏 ⋅ 𝑒

𝑘𝑎 𝑘𝑏

sk𝑎 sk𝑏

𝜎 = 𝑘 − sk ⋅ 𝑒

𝑅 = 𝑘𝑎 ⋅ 𝐺 + 𝑘𝑏 ⋅ 𝐺

Threshold Schnorr

SchnorrSign sk,𝑚 :

Sample instance key 𝑘 ← ℤ𝑞
𝑅 = 𝑘 ⋅ 𝐺

𝑒 = 𝐻 𝑅 ∥ 𝑚

𝜎 = 𝑘 − sk ⋅ 𝑒

Output 𝜎, 𝑒

sk = sk𝑎 + sk𝑏
𝑘 = 𝑘𝑎 + 𝑘𝑏

𝑘𝑎 + 𝑘𝑏 − sk𝑎 + sk𝑏 ⋅ 𝑒

𝑘𝑎 𝑘𝑏

sk𝑎 sk𝑏

𝜎 = 𝑘 − sk ⋅ 𝑒

𝑅 = 𝑘𝑎 ⋅ 𝐺 + 𝑘𝑏 ⋅ 𝐺

Threshold Schnorr

SchnorrSign sk,𝑚 :

Sample instance key 𝑘 ← ℤ𝑞
𝑅 = 𝑘 ⋅ 𝐺

𝑒 = 𝐻 𝑅 ∥ 𝑚

𝜎 = 𝑘 − sk ⋅ 𝑒

Output 𝜎, 𝑒

sk = sk𝑎 + sk𝑏
𝑘 = 𝑘𝑎 + 𝑘𝑏

𝑘𝑎 + 𝑘𝑏 − sk𝑎 + sk𝑏 ⋅ 𝑒

𝑘𝑎 𝑘𝑏

sk𝑎 sk𝑏
𝑅 = 𝑘𝑎 ⋅ 𝐺 + 𝑘𝑏 ⋅ 𝐺

𝜎𝑎 = 𝑘𝑎 − sk𝑎 ⋅ 𝑒 𝜎𝑏 = 𝑘𝑏 − skb ⋅ 𝑒
𝜎𝑎

𝜎 = 𝜎𝑎 + 𝜎𝑏

𝜎 = 𝑘 − sk ⋅ 𝑒

ECDSASign sk,𝑚 :
Sample instance key 𝑘 ← ℤ𝑞

∗

𝑅 = 𝑘 ⋅ 𝐺
𝑒 = 𝐻 𝑚

𝜎 =
𝑒

𝑘
+

sk

𝑘
⋅ 𝑟𝑥

Output 𝜎, 𝑟𝑥

What makes ECDSA difficult?

SchnorrSign sk,𝑚 :

Sample instance key 𝑘 ← ℤ𝑞
𝑅 = 𝑘 ⋅ 𝐺

𝑒 = 𝐻 𝑅 ∥ 𝑚

𝜎 = 𝑘 − sk ⋅ 𝑒

Output 𝜎, 𝑒

ECDSASign sk,𝑚 :
Sample instance key 𝑘 ← ℤ𝑞

∗

𝑅 = 𝑘 ⋅ 𝐺
𝑒 = 𝐻 𝑚

𝜎 =
𝑒

𝑘
+

sk

𝑘
⋅ 𝑟𝑥

Output 𝜎, 𝑟𝑥

What makes ECDSA difficult?

SchnorrSign sk,𝑚 :

Sample instance key 𝑘 ← ℤ𝑞
𝑅 = 𝑘 ⋅ 𝐺

𝑒 = 𝐻 𝑅 ∥ 𝑚

𝜎 = 𝑘 − sk ⋅ 𝑒

Output 𝜎, 𝑒

ECDSASign sk,𝑚 :
Sample instance key 𝑘 ← ℤ𝑞

∗

𝑅 = 𝑘 ⋅ 𝐺
𝑒 = 𝐻 𝑚

𝜎 =
𝑒

𝑘
+

sk

𝑘
⋅ 𝑟𝑥

Output 𝜎, 𝑟𝑥

What makes ECDSA difficult?

SchnorrSign sk,𝑚 :

Sample instance key 𝑘 ← ℤ𝑞
𝑅 = 𝑘 ⋅ 𝐺

𝑒 = 𝐻 𝑅 ∥ 𝑚

𝜎 = 𝑘 − sk ⋅ 𝑒

Output 𝜎, 𝑒

Prior Approaches

Gennaro-Goldfeder-Narayanan16

Lindell17

Boneh-Gennaro-Goldfeder17

1. Multiplicative shares of the
secret and instance keys

1

𝑘
⋅ 𝐻 𝑚 + sk ⋅ 𝑟𝑥

sk = sk𝑎 ⋅ sk𝑏𝑘 = 𝑘𝑎 ⋅ 𝑘𝑏

Prior Approaches

Gennaro-Goldfeder-Narayanan16

Lindell17

Boneh-Gennaro-Goldfeder17

1. Multiplicative shares of the
secret and instance keys

2. Use additively homomorphic
Paillier encryption

1

𝑘
⋅ 𝐻 𝑚 + sk ⋅ 𝑟𝑥

1

𝑘𝑎
⋅

1

𝑘𝑏
⋅ 𝐻 𝑚 +

sk

𝑘𝑏
⋅ 𝑟𝑥

sk = sk𝑎 ⋅ sk𝑏𝑘 = 𝑘𝑎 ⋅ 𝑘𝑏

Paillier encryption

Prior Approaches
GGN16, BGG17
• t-of-n, 4 rounds (reduced from 6 rounds)
• Expensive setup; not implemented or not reported
• Additional assumptions:

• Decisional Composite Residuosity
• Strong RSA

Lindell17
• Only 2-of-2, 4 rounds
• Additional assumptions:

• Decisional Composite Residuosity
• Paillier-EC (new, construction-specific)

Our Approach to Threshold Signing

pk = sk ⋅ 𝐺

sk = sk𝑎 ⋅ sk𝑏sk𝑎 sk𝑏

Our Approach to Threshold Signing

𝑅 = 𝑘 ⋅ 𝐺

𝑘 = 𝑘𝑎 ⋅ 𝑘𝑏sk𝑎 sk𝑏
𝑘𝑎 𝑘𝑏

Our Approach to Threshold Signing

1

𝑘
⋅ 𝐻 𝑚 +

sk

𝑘
⋅ 𝑟𝑥

1

𝑘𝑎
⋅
1

𝑘𝑏
⋅ 𝐻 𝑚 +

sk𝑎
𝑘𝑎

⋅
sk𝑏
𝑘𝑏

⋅ 𝑟𝑥

𝑘𝑎 𝑘𝑏

sk𝑎 sk𝑏

Our Approach to Threshold Signing

1

𝑘
⋅ 𝐻 𝑚 +

sk

𝑘
⋅ 𝑟𝑥

𝑘𝑎 𝑘𝑏

sk𝑎 sk𝑏

1

𝑘𝑎
⋅
1

𝑘𝑏
⋅ 𝐻 𝑚 +

sk𝑎
𝑘𝑎

⋅
sk𝑏
𝑘𝑏

⋅ 𝑟𝑥

Our Approach to Threshold Signing

1

𝑘
⋅ 𝐻 𝑚 +

sk

𝑘
⋅ 𝑟𝑥

𝑘𝑎 𝑘𝑏

sk𝑎 sk𝑏

1

𝑘𝑎
⋅
1

𝑘𝑏
⋅ 𝐻 𝑚 +

sk𝑎
𝑘𝑎

⋅
sk𝑏
𝑘𝑏

⋅ 𝑟𝑥

Our Approach to Threshold Signing

𝑘𝑎 𝑘𝑏

sk𝑎 sk𝑏

1

𝑘𝑎
⋅
1

𝑘𝑏
⋅ 𝐻 𝑚 +

sk𝑎
𝑘𝑎

⋅
sk𝑏
𝑘𝑏

⋅ 𝑟𝑥

𝑡𝑎 + 𝑡𝑏 = 𝛼 ⋅ 𝛽

𝑡𝑎

𝛼

𝑡𝑏

𝛽

Our Approach to Threshold Signing

1

𝑘𝑎
⋅
1

𝑘𝑏
⋅ 𝐻 𝑚 +

sk𝑎
𝑘𝑎

⋅
sk𝑏
𝑘𝑏

⋅ 𝑟𝑥

𝑘𝑎 𝑘𝑏

sk𝑎 sk𝑏

𝑡𝑎
1
+ 𝑡𝑏

1
=

1

𝑘𝑎
⋅
1

𝑘𝑏

𝑡𝑎
1 𝑡𝑏

1

1

𝑘𝑎

1

𝑘𝑏

Our Approach to Threshold Signing

𝑡𝑎
1
+ 𝑡𝑏

1
⋅ 𝐻 𝑚 +

sk𝑎
𝑘𝑎

⋅
sk𝑏
𝑘𝑏

⋅ 𝑟𝑥

𝑘𝑎 𝑘𝑏

sk𝑎 sk𝑏

𝑡𝑎
1
+ 𝑡𝑏

1
=

1

𝑘𝑎
⋅
1

𝑘𝑏

𝑡𝑎
1

1

𝑘𝑎

𝑡𝑏
1

1

𝑘𝑏

Our Approach to Threshold Signing

𝑡𝑎
1
+ 𝑡𝑏

1
⋅ 𝐻 𝑚 +

sk𝑎
𝑘𝑎

⋅
sk𝑏
𝑘𝑏

⋅ 𝑟𝑥

𝑘𝑏

sk𝑏
𝑘𝑎

sk𝑎

𝑡𝑎
1

1

𝑘𝑎

𝑡𝑏
1

1

𝑘𝑏

sk𝑎
𝑘𝑎

sk𝑏
𝑘𝑏

𝑡𝑎
2 𝑡𝑏

2

𝑡𝑎
2
+ 𝑡𝑏

2
=
sk𝑎
𝑘𝑎

⋅
sk𝑏
𝑘𝑏

Our Approach to Threshold Signing

𝑘𝑏

sk𝑏

𝑡𝑎
1
+ 𝑡𝑏

1
⋅ 𝐻 𝑚 + 𝑡𝑎

2
+ 𝑡𝑏

2
⋅ 𝑟𝑥

𝑘𝑎

sk𝑎

𝑡𝑎
1

1

𝑘𝑎

𝑡𝑏
1

1

𝑘𝑏

sk𝑎
𝑘𝑎

sk𝑏
𝑘𝑏

𝑡𝑎
2 𝑡𝑏

2

𝑡𝑎
2
+ 𝑡𝑏

2
=
sk𝑎
𝑘𝑎

⋅
sk𝑏
𝑘𝑏

Our Approach to Threshold Signing

𝑡𝑎
1
+ 𝑡𝑏

1
⋅ 𝐻 𝑚 + 𝑡𝑎

2
+ 𝑡𝑏

2
⋅ 𝑟𝑥

𝑘𝑏

sk𝑏

𝑡𝑎
1
⋅ 𝐻 𝑚 + 𝑡𝑎

2
⋅ 𝑟𝑥 𝑡𝑏

1
⋅ 𝐻 𝑚 + 𝑡𝑏

2
⋅ 𝑟𝑥

𝑘𝑎

sk𝑎

𝑡𝑎
1

𝑡𝑎
2

1

𝑘𝑎

sk𝑎
𝑘𝑎

𝑡𝑏
1

𝑡𝑏
2

1

𝑘𝑏

sk𝑏
𝑘𝑏

[Gilboa99] Multiplication by Oblivious Transfer
(Semi-honest)

of OTs proportional to security parameter
Efficient with OT extension (symmetric key operations)

𝜎𝑎 = 𝑡𝑎
1
⋅ 𝐻 𝑚 + 𝑡𝑎

2
⋅ 𝑟𝑥 𝑡𝑏

1
⋅ 𝐻 𝑚 + 𝑡𝑏

2
⋅ 𝑟𝑥

𝑘𝑏

sk𝑏

𝑝𝑘 = sk𝑎 ⋅ sk𝑏 ⋅ 𝐺
𝑅 = 𝑘𝑎 ⋅ 𝑘𝑏 ⋅ 𝐺

Skeleton Protocol

𝑘𝑎

sk𝑎

𝑡𝑎
1

𝑡𝑎
2

1

𝑘𝑎

sk𝑎
𝑘𝑎

𝑡𝑏
1

𝑡𝑏
2

1

𝑘𝑏

sk𝑏
𝑘𝑏

𝜎𝑎

𝑘𝑏

sk𝑏

Hardening for Malicious Security

𝑡𝑏
1
⋅ 𝐻 𝑚 + 𝑡𝑏

2
⋅ 𝑟𝑥

𝑘𝑎

sk𝑎

𝑝𝑘 = sk𝑎 ⋅ sk𝑏 ⋅ 𝐺
𝑅 = 𝑘𝑎 ⋅ 𝑘𝑏 ⋅ 𝐺

𝑡𝑎
1

𝑡𝑎
2

1

𝑘𝑎

sk𝑎
𝑘𝑎

𝑡𝑏
1

𝑡𝑏
2

1

𝑘𝑏

sk𝑏
𝑘𝑏

𝜎𝑎 = 𝑡𝑎
1
⋅ 𝐻 𝑚 + 𝑡𝑎

2
⋅ 𝑟𝑥 𝜎𝑎

𝑘𝑏

sk𝑏

Hardening for Malicious Security

1. Maliciously secure
multiplication

𝑡𝑏
1
⋅ 𝐻 𝑚 + 𝑡𝑏

2
⋅ 𝑟𝑥

𝑘𝑎

sk𝑎

𝑝𝑘 = sk𝑎 ⋅ sk𝑏 ⋅ 𝐺
𝑅 = 𝑘𝑎 ⋅ 𝑘𝑏 ⋅ 𝐺

𝑡𝑎
1

𝑡𝑎
2

1

𝑘𝑎

sk𝑎
𝑘𝑎

𝑡𝑏
1

𝑡𝑏
2

1

𝑘𝑏

sk𝑏
𝑘𝑏

𝜎𝑎 = 𝑡𝑎
1
⋅ 𝐻 𝑚 + 𝑡𝑎

2
⋅ 𝑟𝑥 𝜎𝑎

𝑘𝑏

sk𝑏

Hardening for Malicious Security

1. Maliciously secure
multiplication

2. Enforce input
consistency

𝑡𝑏
1
⋅ 𝐻 𝑚 + 𝑡𝑏

2
⋅ 𝑟𝑥

𝑘𝑎

sk𝑎

𝑝𝑘 = sk𝑎 ⋅ sk𝑏 ⋅ 𝐺
𝑅 = 𝑘𝑎 ⋅ 𝑘𝑏 ⋅ 𝐺

𝑡𝑎
1

𝑡𝑎
2

1

𝑘𝑎

sk𝑎
𝑘𝑎

𝑡𝑏
1

𝑡𝑏
2

1

𝑘𝑏

sk𝑏
𝑘𝑏

𝜎𝑎 = 𝑡𝑎
1
⋅ 𝐻 𝑚 + 𝑡𝑎

2
⋅ 𝑟𝑥 𝜎𝑎

Hardening for Malicious Security

Malicious Multiplication Input Consistency

1. Checks per OT
• ½ probability getting caught

per OT
2. High entropy encoding scheme

• Bob encodes his input into
multiplication

Verify output is an ECDSA
signature

A new consistency check

Assumptions Needed

1. Checks per OT
2. High entropy encoding scheme

Verify output is an ECDSA
signature

A new consistency check

statistical in ROM ECDSA is a signature
scheme

Computational Diffie-
Hellman

Malicious Multiplication Input Consistency

CDH implied by generic
group model, which is
what ECDSA is proven in

Security Against Malicious Bob

𝑡𝑎
1
+ 𝑡𝑏

1
=
1

𝑘

𝑡𝑎
2
+ 𝑡𝑏

2
=
sk

𝑘
𝑡𝑏
1

𝑡𝑏
2

𝑡𝑎
1

𝑡𝑎
2

Security Against Malicious Bob

𝑡𝑎
1
+ 𝑡𝑏

1
=
1

𝑘

𝑡𝑎
2
+ 𝑡𝑏

2
=
sk

𝑘
𝑡𝑏
1

𝑡𝑏
2

𝑡𝑎
1

𝑡𝑎
2

Security Against Malicious Bob

𝑡𝑎
1
+ 𝑡𝑏

1
=
1

𝑘

𝑡𝑎
2
+ 𝑡𝑏

2
=

sk

𝑘
𝑡𝑏
1

𝑡𝑏
2

𝑡𝑎
1

𝑡𝑎
2

Security Against Malicious Bob

𝑡𝑎
1
+ 𝑡𝑏

1
=
1

𝑘

𝑡𝑎
2
+ 𝑡𝑏

2
=

sk

𝑘
𝑡𝑏
1

𝑡𝑏
2

𝑡𝑎
1

𝑡𝑎
2

Security Against Malicious Bob

𝑡𝑎
1
+ 𝑡𝑏

1
=
1

𝑘

𝑡𝑎
2
+ 𝑡𝑏

2
=
1

𝑘
𝑡𝑏
1

𝑡𝑏
2

𝑡𝑎
1

𝑡𝑎
2

Security Against Malicious Bob

𝑡𝑎
1
+ 𝑡𝑏

1
=
1

𝑘

𝑡𝑎
2
+ 𝑡𝑏

2
=
1

𝑘
𝑡𝑏
1

𝑡𝑏
2

𝑡𝑎
1

𝑡𝑎
2

Security Against Malicious Bob

𝑡𝑎
1
+ 𝑡𝑏

1
=
1

𝑘

𝑡𝑎
2
+ 𝑡𝑏

2
=
1

𝑘
𝑡𝑏
1

𝑡𝑏
2

𝑡𝑎
1

𝑡𝑎
2

Security Against Malicious Bob

𝑡𝑏
1

𝑡𝑏
2

𝑡𝑎
1

𝑡𝑎
2

𝑡𝑎
1
+ 𝑡𝑏

1
=
1

𝑘

𝑡𝑎
2
+ 𝑡𝑏

2
=
1

𝑘

𝑡𝑎
1
+ 𝑡𝑏

1
⋅ 𝑝𝑘 = 𝑡𝑎

2
+ 𝑡𝑏

2
⋅ 𝐺

Security Against Malicious Bob

𝑡𝑎
1
+ 𝑡𝑏

1
⋅ 𝑝𝑘 = 𝑡𝑎

2
+ 𝑡𝑏

2
⋅ 𝐺

𝑡𝑎
1
⋅ 𝑝𝑘 − 𝑡𝑎

2
⋅ 𝐺

𝑡𝑏
1

𝑡𝑏
2

𝑡𝑎
1

𝑡𝑎
2

= 𝑡𝑏
2
⋅ 𝐺 − 𝑡𝑏

1
⋅ 𝑝𝑘

Security Against Malicious Bob

𝑡𝑎
1

1

𝑘𝑎

𝑡𝑏
1

1

𝑘𝑏

𝑡𝑎
1
+ 𝑡𝑏

1
=
1

𝑘
+

𝛿

𝑘𝑎

Computing this is as hard as CDH!

+
𝛿

𝑘𝑎
⋅ 𝑝𝑘𝑡𝑎

1
⋅ 𝑝𝑘 − 𝑡𝑎

2
⋅ 𝐺 = 𝑡𝑏

2
⋅ 𝐺 − 𝑡𝑏

1
⋅ 𝑝𝑘

+ 𝛿

𝑡𝑏
1

𝑡𝑏
2

𝑡𝑎
1

𝑡𝑎
2

Security Against Malicious Bob

𝑡𝑎
1
⋅ 𝑝𝑘 − 𝑡𝑎

2
⋅ 𝐺 = 𝑡𝑏

2
⋅ 𝐺 − 𝑡𝑏

1
⋅ 𝑝𝑘Γ:

𝜎𝑎

Γ

𝑡𝑏
1

𝑡𝑏
2

𝑡𝑎
1

𝑡𝑎
2

Consistency Check Optimization

𝐸𝑛𝑐Γ 𝜎𝑎

𝑡𝑏
1

𝑡𝑏
2

𝑡𝑎
1

𝑡𝑎
2

𝑡𝑎
1
⋅ 𝑝𝑘 − 𝑡𝑎

2
⋅ 𝐺 = 𝑡𝑏

2
⋅ 𝐺 − 𝑡𝑏

1
⋅ 𝑝𝑘Γ:

Instance Key Exchange

Multiplication

Consistency Check

Final signature output

𝐷𝑏 = 𝑘𝑏 ⋅ 𝐺

𝑅′ = 𝑘𝑎
′ ⋅ 𝐷𝑏

Bob’s OT Messages

Alice’s OT Messages

Γ Check

𝜎𝑎

𝑘𝑎

sk𝑎

𝑘𝑏

sk𝑏

Protocol

Multiplication

Bob’s OT Messages

Alice’s OT Messages

Instance Key Exchange

Consistency Check

𝐷𝑏 = 𝑘𝑏 ⋅ 𝐺

Γ Check

𝑅′ = 𝑘𝑎
′ ⋅ 𝐷𝑏

Final signature output
𝜎𝑎

𝑘𝑏

sk𝑏
𝑘𝑎

sk𝑎

Protocol

Multiplication

Bob’s OT Messages

Alice’s OT Messages

Instance Key Exchange

Consistency Check

𝐷𝑏 = 𝑘𝑏 ⋅ 𝐺

Γ Check

𝑅′ = 𝑘𝑎
′ ⋅ 𝐷𝑏

Final signature output
𝜎𝑎

𝑘𝑏

sk𝑏
𝑘𝑎

sk𝑎

Note: This 2 round
comes at the cost of
a slight relaxation to
definition where
Alice is allowed negl
bias in instance key

Protocol

On the Benefit of Two Messages

Why not generic MPC

• Highly efficient multiplication in 2 rounds
• Don’t amortize over large number of gates

• Exploit verifiability
• Take advantage of public values with respect to signature scheme

to verify inputs
• Don’t need expensive techniques to ensure input consistency

Implementation

•Open source implementation in Rust
• SHA-256, same as ECDSA
• 10,000 samples for setup, 100,000 samples for signing
• Setup is 5 rounds and all n parties participate

Signing Communication Costs

2-of-n Setup over LAN

Benchmarks over WAN: 2-of-2 and 2-of-n

Round-trip latency between Virginia and Paris: 78.2 ms

Benchmarks over WAN: 2-of-4 Setup

Round-trip latency between US data centers: 11.2 ms to 79.9 ms

Benchmarks over WAN: 2-of-10 Setup

Round-trip latency between Ireland and Mumbai: 282 ms

Times in ms over WAN

Conclusion

• ECDSA threshold with no more assumptions than ECDSA

• Improved efficiency

• Open-source implementation in Rust

• https://gitlab.com/neucrypt/mpecdsa

• Can be extended to k-out-of-n

Thank You!

Appendix: 2-of-n Signing

sk = sk𝑎 + sk𝑏

1

𝑘𝑎
⋅
1

𝑘𝑏
⋅ 𝐻 𝑚 +

1

𝑘𝑎
⋅
1

𝑘𝑏
⋅ sk𝑎 + sk𝑏 ⋅ 𝑟𝑥

1

𝑘𝑎
⋅
1

𝑘𝑏
⋅ 𝐻 𝑚 +

sk𝑎
𝑘𝑎

⋅
1

𝑘𝑏
⋅ 𝑟𝑥 +

1

𝑘𝑎
⋅
sk𝑏
𝑘𝑏

⋅ 𝑟𝑥

