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Elliptic Curve Digital Signature Algorithm

•Digital Signature Algorithm with elliptic curves
• Smaller signature (512 bits) and key sizes (256-bit)
• Security proof in “generic group model”

•Used pervasively in:
• TLS
• DNSSEC
• Cryptocurrencies (Bitcoin, Ethereum, …)



Why Threshold Signatures?



Single Point of Failure for Signer



Distribute Signing Key Among Many Devices



Multi-Signature

n parties

Each party has their own key pair

To sign a message, each party 
produces a signature under their 
public key …

𝑝𝑘2, 𝑠𝑘2

𝑝𝑘1, 𝑠𝑘1

𝑝𝑘3, 𝑠𝑘3

𝑝𝑘4, 𝑠𝑘4

𝑝𝑘𝑛−1, 𝑠𝑘𝑛−1

𝑝𝑘𝑛, 𝑠𝑘𝑛

Signature: 𝜎1, 𝜎2, … , 𝜎𝑛



• High bandwidth
• Need to produce n signatures

• Major bugs in implementations trying 
to reduce bandwidth

• Participating signers publicly known

Why not Multi-Signatures?



t-of-n Threshold Signature Scheme

n parties

Jointly compute a single public key

Each party has a share of the secret key

t parties needed to generate new 
signatures

𝑝𝑘

…

Signature: 𝜎

𝑝𝑘, 𝑠𝑘2

𝑝𝑘, 𝑠𝑘1

𝑝𝑘, 𝑠𝑘3

𝑝𝑘, 𝑠𝑘4

𝑝𝑘, 𝑠𝑘𝑛−1

𝑝𝑘, 𝑠𝑘𝑛



2-of-n Threshold Signature Scheme



2-of-n Threshold Signature Scheme

Participation of 2 parties needed to generate new signatures



2-of-n Threshold Signature Scheme

Single users cannot forge a signature
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2-of-n Threshold Signature Scheme

Single users cannot forge a signature



Handling Corruptions



Handling Corruptions

Adversary can interact with parties



Handling Corruptions

Adversary can interact with parties



Handling Corruptions

Adversary can interact with parties



Handling Corruptions

Adversary still shouldn’t be able to forge a signature



Security Model

Real Ideal

Any Adv in the real world can be mapped to one in the ideal world



ECDSA Functionality
Note: Our functionality 
concretely implements the 
ECDSA algorithm and is not a 
signature algorithm



ECDSA Functionality

init

init

init

init

init

init



ECDSA Functionality

pk

pk

pk
pk

pk

pk



ECDSA Functionality



ECDSA Functionality

m

m



ECDSA Functionality

sig



(Preview) Prior Works on Threshold ECDSA

• Some not proven via real/ideal

• Some have long complex, setup (several minutes), semi-honest

• All need additional assumptions



This Work

•Maliciously secure threshold ECDSA
• 2-round with relaxed definition
• Maliciously secure multiplication with external checks

•No additional assumptions 
• Threshold ECDSA scheme from only ECDSA

• Improved efficiency
• ~3 ms to sign

•Open source implementation in Rust



This Talk

•2-of-2 Threshold ECDSA
• Extended to 2-of-n in paper

•Optimizations



Threshold Schnorr

SchnorrSign sk,𝑚 :

Sample instance key 𝑘 ← ℤ𝑞
𝑅 = 𝑘 ⋅ 𝐺

𝑒 = 𝐻 𝑅 ∥ 𝑚

𝜎 = 𝑘 − sk ⋅ 𝑒

Output 𝜎, 𝑒
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sk = sk𝑎 + sk𝑏
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𝜎 = 𝑘 − sk ⋅ 𝑒
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sk𝑎 sk𝑏
𝑅 = 𝑘𝑎 ⋅ 𝐺 + 𝑘𝑏 ⋅ 𝐺
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ECDSASign sk,𝑚 :
Sample instance key 𝑘 ← ℤ𝑞

∗

𝑅 = 𝑘 ⋅ 𝐺
𝑒 = 𝐻 𝑚

𝜎 =
𝑒

𝑘
+

sk
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Prior Approaches

Gennaro-Goldfeder-Narayanan16

Lindell17

Boneh-Gennaro-Goldfeder17

1. Multiplicative shares of the 
secret and instance keys

1

𝑘
⋅ 𝐻 𝑚 + sk ⋅ 𝑟𝑥

sk = sk𝑎 ⋅ sk𝑏𝑘 = 𝑘𝑎 ⋅ 𝑘𝑏



Prior Approaches

Gennaro-Goldfeder-Narayanan16

Lindell17

Boneh-Gennaro-Goldfeder17

1. Multiplicative shares of the 
secret and instance keys

2. Use additively homomorphic 
Paillier encryption

1

𝑘
⋅ 𝐻 𝑚 + sk ⋅ 𝑟𝑥

1

𝑘𝑎
⋅

1

𝑘𝑏
⋅ 𝐻 𝑚 +

sk

𝑘𝑏
⋅ 𝑟𝑥

sk = sk𝑎 ⋅ sk𝑏𝑘 = 𝑘𝑎 ⋅ 𝑘𝑏

Paillier encryption



Prior Approaches
GGN16, BGG17
• t-of-n, 4 rounds (reduced from 6 rounds)
• Expensive setup; not implemented or not reported
• Additional assumptions:

• Decisional Composite Residuosity
• Strong RSA

Lindell17
• Only 2-of-2, 4 rounds
• Additional assumptions:

• Decisional Composite Residuosity
• Paillier-EC (new, construction-specific)



Our Approach to Threshold Signing

pk = sk ⋅ 𝐺

sk = sk𝑎 ⋅ sk𝑏sk𝑎 sk𝑏



Our Approach to Threshold Signing

𝑅 = 𝑘 ⋅ 𝐺

𝑘 = 𝑘𝑎 ⋅ 𝑘𝑏sk𝑎 sk𝑏
𝑘𝑎 𝑘𝑏



Our Approach to Threshold Signing

1

𝑘
⋅ 𝐻 𝑚 +

sk

𝑘
⋅ 𝑟𝑥

1

𝑘𝑎
⋅
1

𝑘𝑏
⋅ 𝐻 𝑚 +

sk𝑎
𝑘𝑎

⋅
sk𝑏
𝑘𝑏

⋅ 𝑟𝑥

𝑘𝑎 𝑘𝑏

sk𝑎 sk𝑏
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𝑘
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𝑘
⋅ 𝑟𝑥
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𝑘𝑎
⋅
1
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⋅
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1

𝑘
⋅ 𝐻 𝑚 +

sk

𝑘
⋅ 𝑟𝑥

𝑘𝑎 𝑘𝑏

sk𝑎 sk𝑏

1

𝑘𝑎
⋅
1

𝑘𝑏
⋅ 𝐻 𝑚 +

sk𝑎
𝑘𝑎

⋅
sk𝑏
𝑘𝑏

⋅ 𝑟𝑥



Our Approach to Threshold Signing

𝑘𝑎 𝑘𝑏

sk𝑎 sk𝑏

1

𝑘𝑎
⋅
1

𝑘𝑏
⋅ 𝐻 𝑚 +

sk𝑎
𝑘𝑎

⋅
sk𝑏
𝑘𝑏

⋅ 𝑟𝑥

𝑡𝑎 + 𝑡𝑏 = 𝛼 ⋅ 𝛽

𝑡𝑎

𝛼

𝑡𝑏

𝛽



Our Approach to Threshold Signing

1

𝑘𝑎
⋅
1

𝑘𝑏
⋅ 𝐻 𝑚 +

sk𝑎
𝑘𝑎

⋅
sk𝑏
𝑘𝑏

⋅ 𝑟𝑥

𝑘𝑎 𝑘𝑏

sk𝑎 sk𝑏

𝑡𝑎
1
+ 𝑡𝑏

1
=

1

𝑘𝑎
⋅
1

𝑘𝑏

𝑡𝑎
1 𝑡𝑏

1

1

𝑘𝑎

1

𝑘𝑏



Our Approach to Threshold Signing

𝑡𝑎
1
+ 𝑡𝑏

1
⋅ 𝐻 𝑚 +

sk𝑎
𝑘𝑎

⋅
sk𝑏
𝑘𝑏

⋅ 𝑟𝑥

𝑘𝑎 𝑘𝑏

sk𝑎 sk𝑏

𝑡𝑎
1
+ 𝑡𝑏

1
=

1

𝑘𝑎
⋅
1

𝑘𝑏

𝑡𝑎
1

1

𝑘𝑎

𝑡𝑏
1

1

𝑘𝑏



Our Approach to Threshold Signing

𝑡𝑎
1
+ 𝑡𝑏

1
⋅ 𝐻 𝑚 +

sk𝑎
𝑘𝑎

⋅
sk𝑏
𝑘𝑏

⋅ 𝑟𝑥

𝑘𝑏

sk𝑏
𝑘𝑎

sk𝑎

𝑡𝑎
1

1

𝑘𝑎

𝑡𝑏
1

1

𝑘𝑏

sk𝑎
𝑘𝑎

sk𝑏
𝑘𝑏

𝑡𝑎
2 𝑡𝑏

2

𝑡𝑎
2
+ 𝑡𝑏

2
=
sk𝑎
𝑘𝑎

⋅
sk𝑏
𝑘𝑏
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𝑘𝑏

sk𝑏

𝑡𝑎
1
+ 𝑡𝑏

1
⋅ 𝐻 𝑚 + 𝑡𝑎

2
+ 𝑡𝑏

2
⋅ 𝑟𝑥

𝑘𝑎

sk𝑎

𝑡𝑎
1

1

𝑘𝑎

𝑡𝑏
1

1

𝑘𝑏

sk𝑎
𝑘𝑎

sk𝑏
𝑘𝑏

𝑡𝑎
2 𝑡𝑏

2

𝑡𝑎
2
+ 𝑡𝑏

2
=
sk𝑎
𝑘𝑎

⋅
sk𝑏
𝑘𝑏
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𝑡𝑎
1
+ 𝑡𝑏

1
⋅ 𝐻 𝑚 + 𝑡𝑎

2
+ 𝑡𝑏

2
⋅ 𝑟𝑥

𝑘𝑏

sk𝑏

𝑡𝑎
1
⋅ 𝐻 𝑚 + 𝑡𝑎

2
⋅ 𝑟𝑥 𝑡𝑏

1
⋅ 𝐻 𝑚 + 𝑡𝑏

2
⋅ 𝑟𝑥

𝑘𝑎

sk𝑎

𝑡𝑎
1

𝑡𝑎
2

1

𝑘𝑎

sk𝑎
𝑘𝑎

𝑡𝑏
1

𝑡𝑏
2

1

𝑘𝑏

sk𝑏
𝑘𝑏



[Gilboa99] Multiplication by Oblivious Transfer
(Semi-honest)

# of OTs proportional to security parameter
Efficient with OT extension (symmetric key operations)



𝜎𝑎 = 𝑡𝑎
1
⋅ 𝐻 𝑚 + 𝑡𝑎

2
⋅ 𝑟𝑥 𝑡𝑏

1
⋅ 𝐻 𝑚 + 𝑡𝑏

2
⋅ 𝑟𝑥

𝑘𝑏

sk𝑏

𝑝𝑘 = sk𝑎 ⋅ sk𝑏 ⋅ 𝐺
𝑅 = 𝑘𝑎 ⋅ 𝑘𝑏 ⋅ 𝐺

Skeleton Protocol

𝑘𝑎

sk𝑎

𝑡𝑎
1

𝑡𝑎
2

1

𝑘𝑎

sk𝑎
𝑘𝑎

𝑡𝑏
1

𝑡𝑏
2

1

𝑘𝑏

sk𝑏
𝑘𝑏

𝜎𝑎



𝑘𝑏

sk𝑏

Hardening for Malicious Security

𝑡𝑏
1
⋅ 𝐻 𝑚 + 𝑡𝑏

2
⋅ 𝑟𝑥

𝑘𝑎

sk𝑎

𝑝𝑘 = sk𝑎 ⋅ sk𝑏 ⋅ 𝐺
𝑅 = 𝑘𝑎 ⋅ 𝑘𝑏 ⋅ 𝐺

𝑡𝑎
1

𝑡𝑎
2

1

𝑘𝑎

sk𝑎
𝑘𝑎

𝑡𝑏
1

𝑡𝑏
2

1

𝑘𝑏

sk𝑏
𝑘𝑏

𝜎𝑎 = 𝑡𝑎
1
⋅ 𝐻 𝑚 + 𝑡𝑎

2
⋅ 𝑟𝑥 𝜎𝑎



𝑘𝑏

sk𝑏

Hardening for Malicious Security

1. Maliciously secure 
multiplication

𝑡𝑏
1
⋅ 𝐻 𝑚 + 𝑡𝑏

2
⋅ 𝑟𝑥

𝑘𝑎

sk𝑎

𝑝𝑘 = sk𝑎 ⋅ sk𝑏 ⋅ 𝐺
𝑅 = 𝑘𝑎 ⋅ 𝑘𝑏 ⋅ 𝐺

𝑡𝑎
1

𝑡𝑎
2

1

𝑘𝑎

sk𝑎
𝑘𝑎

𝑡𝑏
1

𝑡𝑏
2

1

𝑘𝑏

sk𝑏
𝑘𝑏

𝜎𝑎 = 𝑡𝑎
1
⋅ 𝐻 𝑚 + 𝑡𝑎

2
⋅ 𝑟𝑥 𝜎𝑎



𝑘𝑏

sk𝑏

Hardening for Malicious Security

1. Maliciously secure 
multiplication

2. Enforce input 
consistency

𝑡𝑏
1
⋅ 𝐻 𝑚 + 𝑡𝑏

2
⋅ 𝑟𝑥

𝑘𝑎

sk𝑎

𝑝𝑘 = sk𝑎 ⋅ sk𝑏 ⋅ 𝐺
𝑅 = 𝑘𝑎 ⋅ 𝑘𝑏 ⋅ 𝐺

𝑡𝑎
1

𝑡𝑎
2

1

𝑘𝑎

sk𝑎
𝑘𝑎

𝑡𝑏
1

𝑡𝑏
2

1

𝑘𝑏

sk𝑏
𝑘𝑏

𝜎𝑎 = 𝑡𝑎
1
⋅ 𝐻 𝑚 + 𝑡𝑎

2
⋅ 𝑟𝑥 𝜎𝑎



Hardening for Malicious Security

Malicious Multiplication Input Consistency

1. Checks per OT
• ½ probability getting caught 

per OT
2. High entropy encoding scheme

• Bob encodes his input into 
multiplication

Verify output is an ECDSA 
signature

A new consistency check



Assumptions Needed

1. Checks per OT
2. High entropy encoding scheme

Verify output is an ECDSA 
signature

A new consistency check

statistical in ROM ECDSA is a signature 
scheme

Computational Diffie-
Hellman

Malicious Multiplication Input Consistency

CDH implied by generic 
group model, which is 
what ECDSA is proven in



Security Against Malicious Bob
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𝑡𝑎
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Instance Key Exchange
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comes at the cost of 
a slight relaxation to 
definition where 
Alice is allowed negl
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On the Benefit of Two Messages



Why not generic MPC

• Highly efficient multiplication in 2 rounds
• Don’t amortize over large number of gates

• Exploit verifiability
• Take advantage of public values with respect to signature scheme 

to verify inputs
• Don’t need expensive techniques to ensure input consistency



Implementation

•Open source implementation in Rust
• SHA-256, same as ECDSA
• 10,000 samples for setup, 100,000 samples for signing
• Setup is 5 rounds and all n parties participate



Signing Communication Costs







2-of-n Setup over LAN



Benchmarks over WAN: 2-of-2 and 2-of-n

Round-trip latency between Virginia and Paris: 78.2 ms



Benchmarks over WAN: 2-of-4 Setup

Round-trip latency between US data centers: 11.2 ms to 79.9 ms



Benchmarks over WAN: 2-of-10 Setup

Round-trip latency between Ireland and Mumbai: 282 ms



Times in ms over WAN



Conclusion

• ECDSA threshold with no more assumptions than ECDSA

• Improved efficiency

• Open-source implementation in Rust

• https://gitlab.com/neucrypt/mpecdsa

• Can be extended to k-out-of-n



Thank You!



Appendix: 2-of-n Signing

sk = sk𝑎 + sk𝑏

1

𝑘𝑎
⋅
1

𝑘𝑏
⋅ 𝐻 𝑚 +

1

𝑘𝑎
⋅
1

𝑘𝑏
⋅ sk𝑎 + sk𝑏 ⋅ 𝑟𝑥

1

𝑘𝑎
⋅
1

𝑘𝑏
⋅ 𝐻 𝑚 +

sk𝑎
𝑘𝑎

⋅
1

𝑘𝑏
⋅ 𝑟𝑥 +

1

𝑘𝑎
⋅
sk𝑏
𝑘𝑏

⋅ 𝑟𝑥


