
Oblivious Computation
with Data Locality
Gilad Asharov

Hubert Chan

Kartik Nayak

Rafael Pass

Ling Ren

Elaine Shi

secure processor

Access Pattern Leakage
(or, why encrypting the data is insufficient?)

Kidney
Problem

Liver
Problem

Heart
Problem

Access Pattern Leakage
(or, why encrypting the data is insufficient?)

Oblivious
RAM

Oblivious RAM
(or - How to Hide the Access Pattern?)

Write(addr1,v)

Write(addr2,v)

Read(addr3)

v

Oblivious RAM
•Introduced by Goldreich [STOC’87]
• Informal definition:

•The access pattern can be simulated by
the total number of Read/Write
instructions that the program performs

•Lower bound: memory N
•Ω(log N) overhead for every operation

•Recently - very interesting progress
[GO96,BN16,LN18]

Known ORAMs

Hierarchical Tree based ORAM
[GO96,Kushilevitz,Lu,Ostrovsky12]

 [Stefanov,van Dijk,Shi,Chan, 
Fletcher,Ren,Yu,Devadas13]

~O(log2N)

Locality
• A phenomenon:
if a program or application accesses some address it

is very likely to access also a neighboring address
• Locality is everywhere:

• Physically: Rotational hard-drive are significantly faster
when accessing sequential data than random seeks

• Cache: Usually fetching neighboring data as well
• Surfaced from implementations of Searchable

Symmetric Encryption
• A crucial efficiency measure!

Kidney
Problem

Liver
Problem

Heart
Problem

Accessing Sequential Data?

Oblivious
RAM

• ORAM completely destroys  
the locality of the program!

• Accessing a single contiguous-region of size L
results in  
accessing O(L log2N) non-contiguous blocks

Accessing Sequential Data?

Write(addr1,v)

Write(addr2,v)

Read(addr3)

v

Our Goal:
ORAM with Locality

• ORAM that preserves the locality of the program:
• If an incoming request access a possibly large

contiguous region, then the ORAM should also
access contiguous memory regions

• Locality and obliviousness are contradicting goals!
• ORAM must shuffle the data  

around the memory
• Locality is usually achieved by  

highly structured memory layout

Related Work
• Locality in algorithms […Vitter01]
• SSE does not scale well to big databases without

considering locality [CJJKRS,CRYPTO’13]
• Tradeoffs between obliviousness, space and locality
• [Cash,Tessaro’14],[A,Naor,Segev,Shahaf’16],[Demertzis,Papamanthou’17],

[A,Segev,Shahaf’18],[Demertzis,Papadopoulos,Papamanthou’18]
• Oblivious RAM and secure computation

• [Gordon,Katz,Kolesnikov,Krell,Malkin,Raykova,Vahlis’12],
[Gentry,Goldman,Halevi,Lu,Ostrovsky,Raykova,Wichs’14],
[Wang,Huang,Chan,shelat,Shi’14]

• Garbled RAM [LuOstrovsky13,…]
• Avishay’s talk (next)

Agenda
•Defining locality

• Impossibility result

•Primitive I: Range ORAM

•Primitive II: File ORAM

•Locality-friendly oblivious sort

Defining Locality
• Locality: intuitively, number of sequential memory

regions accessed during the execution of the program

Locality = 3

1 5 2 4 7 8 12 7 6 3 1 7 7 12 3 7
Inner product of two (long, say n) arrays?

1 disk, minimize “move” of the read/write head

Locality = O(n)

Locality = O(1)

1 5 2 4 7 8 12 7 6 3 1 7 7 12 3 7
Inner product of two (long) arrays — 2 read/write heads?

• We allow accessing H regions concurrently
• Think of H different disks, or
• A cache with H different lines, or
• A disk with H read/write heads

• Good locality = small H (O(1)), small L

Defining Locality

Definition:  
An algorithm / program is (H,L)-local  
if it performs L sequential read/writes from a memory that is
equipped with H-heads

Impossibility Result*
• Local ORAM is impossible

• ORAM must randomly permute elements around
the memory

• Must hide whether we have  
L requests of non-contiguous blocks or  
a single request of L contiguous blocks

• We must relax our requirements
• aka, leakage…

Theorem:  
Any (O(polylogN),O(polylogN))-local ORAM scheme would
have inefficient bandwidth blowup Ω(N1-ϵ) for some constant ϵ

*In the balls and bins model

First Primitive:
Range ORAM

Range
ORAM

Write(addr1,length1,data)

Read(addr2,length2)

Leakage:
length1
length2Local??

ORAM

Write(addr1,data)

Read(addr2)

Simulator receives number of read/write operations

Simulator receives length1,length2…

Our Results

Security Space Bandwidth Locality Leakage

Range ORAM stat O(NlogN) L Õ(log3N) Õ(log3N) L

ORAM stat O(N) L o(log2N) L o(log2N) none

• Impossibility: locality without leakage of lengths

On Leaking the Lengths

• Inherent: our lower bound…

• Strict generalization of ORAM

• The client can choose when and what to leak

• In many applications, ordinary ORAM also leaks sizes
when accessing a region of length L

• via communication volume [KellarisKolliosNissim16]

• Possible extension:  
add differential privacy to mitigate the leakage

Second Primitive:
File ORAM

Range
ORAM

Write(addr1,length1,data)

Read(addr2,length2)

Leakage:
length1
length2For all addresses, all possible lengths are allowed

File
ORAM

Write(fid1,data)

Read(fid2)

Leakage:
length(fid1)
length(fid2)

The possible (addr,length) are known in advance 
 and do not overlap

Our Results
• Impossibility: locality without leakage of lengths

Essentially, locality for free!

Security Space Bandwidth Locality Leakage

Range ORAM stat O(NlogN) L Õ(log3N) Õ(log3N) L

File ORAM comp O(N) L Õ(log2N) Õ(logN) L

ORAM stat O(N) L o(log2N) L o(log2N) none

Our Results
• Impossibility: locality without leakage of lengths

Security Space Bandwidth Locality Leakage

Range ORAM stat O(NlogN) L Õ(log3N) Õ(log3N) L

File ORAM comp O(N) L Õ(log2N) Õ(logN) L

ORAM stat O(N) L o(log2N) L o(log2N) none

• An intermediate result: Locality-Friendly oblivious sort
• Perfect: O(N log2N)-work and (2,O(log2N))-locality
• Statistical: Õ(N logN)-work and (3,Õ(logN))-locality

This Talk
• Impossibility: locality without leakage of lengths

Security Space Bandwidth Locality Leakage

Range ORAM stat O(NlogN) L Õ(log3N) Õ(log3N) L

File ORAM comp O(N) L Õ(log2N) Õ(logN) L

ORAM stat O(N) L o(log2N) L o(log2N) none

• An intermediate result: Locality-Friendly oblivious sort
• Perfect: O(N log2N)-work and O(log2N)-locality
• Statistical: Õ(N logN)-work and Õ(logN)-locality

File ORAM: Construction
File

ORAM

Write(fid1,data)

Read(fid2)

Leakage:
length(fid1)
length(fid2)

Non-Recurrent
Oblivious File Hashing

Scheme
File ORAMOblivious Sort

Non-Recurrent File Hashing
Scheme with Locality

• Functionality:
• Build(X) : Given an array with files data, build structure

• Each element: (fid,offset,data)
• Read(fid,len): returns all elements with fid  

Supports also fake fid=*

• Obliviousness: instructions
(Build(X),Read(fid1,len1),Read(fid2,len2),…,)  
with non-recurrent fid (except for *) can be simulated from 
(|X|,len1,len2,…)

How to build such a primitive with “good” locality?

Two-Dimensional Allocation

Two-Dimensional Allocation

Two-Dimensional Allocation

Place the whole file according to  
a single probabilistic choice!

Two-Dimensional Allocation

Two-Dimensional Allocation

Two-Dimensional Allocation

Two-Dimensional Allocation

Two-Dimensional Allocation

Two-Dimensional Allocation

Two-Dimensional Allocation

Two-Dimensional Allocation

Two-Dimensional Allocation

What is the maximal load?

Pad with dummies

How Do We Search?
Read(,5)

5

Overhead = bin size

How Do We Search?
Read(*, L)

Just access random L consecutive bins

L

(*=fake fid)

Overhead = bin size

Two-Dimensional Allocation
[AsharovNaorSegevShahaf’16]

• This yields a Non-Recurrent File Hashing Scheme
with:
• Space: B x Z = O(|X|)
• Locality (Search): O(1)
• Bandwidth: Õ(log k)

• How to perform Build(X) obliviously?

Theorem:  
Set B=|X|/O(log k loglog k) (where k is the security parameter).
Then, with an overwhelming probability, the maximal load is
Z=3logk loglogk

Implementing Build Obliviously Using
Locality-Friendly Oblivious-Sort

Input: Array X. Each element of the format (fid,offset,data)

Build
Input: Array X. Each element of the format (fid,offset,data)
• Choose a random PRF key K
• Assign to each element its dest bin: PRFK(fid)+offset
• Add ZB new dummy elements (doubles the structure)

• Assign Z dummy elements for each bin
• Oblivious sort according to the new assignment
• Scan and mark all exceeded elements
• Oblivious sort again, sending all exceeded elements to the very end
• Truncate the array, removing the dummy elements

Oblivious Sort?

Build
Input: Array X. Each element of the format (fid,offset,data)
• Choose a random PRF key K
• Assign to each element its dest bin: PRFK(fid)+offset
• Add ZB new dummy elements (doubles the structure)

• Assign Z dummy elements for each bin
• Oblivious sort according to the new assignment
• Scan and mark all exceeded elements
• Oblivious sort again, sending all exceeded elements to the very end
• Truncate the array, removing the dummy elements

Z=bin size
B=number of bins

Build
Input: Array X. Each element of the format (fid,offset,data)
• Choose a random PRF key K
• Assign to each element its dest bin: PRFK(fid)+offset
• Add ZB new dummy elements (doubles the structure)

• Assign Z dummy elements for each bin
• Oblivious sort according to the new assignment
• Scan and mark all exceeded elements
• Oblivious sort again, sending all exceeded elements to the very end
• Truncate the array, removing the dummy elements

Z=bin size
B=number of bins

Build
Input: Array X. Each element of the format (fid,offset,data)
• Choose a random PRF key K
• Assign to each element its dest bin: PRFK(fid)+offset
• Add ZB new dummy elements (doubles the structure)

• Assign Z dummy elements for each bin
• Oblivious sort according to the new assignment
• Scan and mark all exceeded elements
• Oblivious sort again, sending all exceeded elements to the very end
• Truncate the array, removing the dummy elements

(in each bin, number of exceeded elements = number of real elements)

Build
Input: Array X. Each element of the format (fid,offset,data)
• Choose a random PRF key K
• Assign to each element its dest bin: PRFK(fid)+offset
• Add ZB new dummy elements (doubles the structure)

• Assign Z dummy elements for each bin
• Oblivious sort according to the new assignment
• Scan and mark all exceeded elements
• Oblivious sort again, sending all exceeded elements to the very end
• Truncate the array, removing the dummy elements

File ORAM: Construction

Non-Recurrent
Oblivious File Hashing

Scheme
File ORAMOblivious Sort

T0

T1

T2

T3

TlogN

ready

empty

20

21

22

23

2logN

…

Hierarchical construction:
Instead of a hash table in each level [GO’96] 

we use non-recurrent oblivious file hashing scheme

This Talk
• Impossibility: locality without leakage of lengths

Security Space Bandwidth Locality Leakage

Range ORAM stat O(NlogN) L Õ(log3N) Õ(log3N) L

File ORAM comp O(N) L Õ(log2N) Õ(logN) L

ORAM stat O(N) L o(log2N) L o(log2N) none

• An intermediate result: Locality-Friendly oblivious sort
• Perfect: O(N log2N)-work and O(log2N)-locality
• Statistical: Õ(N logN)-work and Õ(logN)-locality

First Primitive:
Range ORAM

Range
ORAM

Write(addr1,length1,data)

Read(addr2,length2)

Leakage:
length1
length2Local??

Read Only Range ORAM
ORAM

B=1
ORAM
B=21

ORAM
B=22

ORAM
B=2logN

• Store multiple copies of the data

• logN ORAMs, each based on a different block-size B

• Read(addr,2i) - fetches 2 blocks from the ith ORAM

• Leaks L=2i

• Space: O(NlogN), Bandwidth: o(Llog2N), locality o(Llog2N)

…

But.. what should we do with writes?
Write(31,data,1) Read(16,data,64)

Write(17,data,1)

Range ORAM

• Range Trees

• Dealing with multiple copies of the data

• Data coherency

• Extensions: Online Range Data

• Perfect Security

This Talk
• Impossibility: locality without leakage of lengths

Security Space Bandwidth Locality Leakage

Range ORAM stat O(NlogN) L Õ(log3N) Õ(log3N) L

File ORAM comp O(N) L Õ(log2N) Õ(logN) L

ORAM stat O(N) L o(log2N) L o(log2N) none

• An intermediate result: Locality-Friendly oblivious sort
• Perfect: O(N log2N)-work and O(log2N)-locality
• Statistical: Õ(N logN)-work and Õ(logN)-locality

Oblivious Sorting
• Tremendous amount of applications…

• Asymptotically best known oblivious sorts are O(nlogn) work  
(but not locality-friendly)
• AKS (1983) - based on expanders, theoretical
• ZigZag sort (Goodrich, STOC’14)

• Very large constants..
• Randomized Shell Sort [Goodrich’11] — not local

• In practice: Batcher (1968) — O(n log2n)
• Good locality, (perfect!) — not asymptotically optimal

• If we want Range ORAM and File ORAM with efficiency
comparable to ordinary ORAM — we need a better oblivious sort

Locality-Friendly  
Oblivious Sort

Oblivious Local Complexity

Merge Sort

Bitonic Sort

Our Sort

Merge Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort

Our Sort

Merge Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort

Our Sort

1 4 5 10 16 25 2 3 6 8 12 15

1 ,

Merge Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort

Our Sort

1 4 5 10 16 25 2 3 6 8 12 15

1 2 ,

Merge Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort

Our Sort

1 4 5 10 16 25 2 3 6 8 12 15

1 2 3 ,

Merge Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort

Our Sort

1 4 5 10 16 25 2 3 6 8 12 15

1 2 3 4 5 6 8 10 12 15 16 25

Bitonic Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort ✔ ✔ O(Nlog2N)

Our Sort

• Batcher sorting:

Bitonic Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort ✔ ✔ O(Nlog2N)

Our Sort

• Batcher sorting:

Bitonic Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort ✔ ✔ O(Nlog2N)

Our Sort

• Batcher sorting:

Bitonic Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort ✔ ✔ O(Nlog2N)

Our Sort

• Batcher sorting:

Bitonic Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort ✔ ✔ O(Nlog2N)

Our Sort

• Batcher sorting:

Bitonic Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort ✔ ✔ O(Nlog2N)

Our Sort

• Batcher sorting:

Our Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ (3 heads) O(NlogN)

Bitonic Sort ✔ ✔ (2 heads) O(Nlog2N)

Our Sort ✔ ✔ (3 heads) O(NlogN loglog2k)

Oblivious Permute
500 1234 2323 5566 111 444 8696 1122 5927 2937 2911

8696 2323 1234 1122 2937 5566 500 2911 111 5927 444

Non-Oblivious Sort
111 444 500 1122 1234 2323 2911 2937 5566 5927 8986

Oblivious Permute + Non-Oblivious Sort = Oblivious Sort

Merge Sort

Statistical
 security

Perfect
 security

Our Oblivious Permute
• We show how to implement oblivious permutation with “slack”

• introducing some “dummy” values between real-values
• Interpret the input array as B buckets of size Z each  

(Z=poly log k, B=N/Z, k is the security parameter)

• Add a bucket of dummy elements between two “real” buckets
• Assign to each element a random destination bin [1,…,B]

(We later remove these dummy elements using the non-oblivious sort)

real dummy

Z
2B

Our Oblivious Permute
A0 A1 A2 A3 A4 A5 A6 A7

i=0

i=1

i=2

0*

00*

0* 0* 0* 1*1*1*1*

01* 10* 11* 00* 01* 10* 11*

000* 001* 010* 011* 100* 101* 110* 111*

MergeSplit

Bucket

Our Oblivious Permute

0* 1*
MergeSplit

Bucket

A0 A1 A2 A3 A4 A5 A6 A7

i=0

i=1

i=2 00*

0* 0* 0* 1*1*1*

01* 10* 11* 00* 01* 10* 11*

000* 001* 010* 011* 100* 101* 110* 111*

MergeSplit - takes all read elements in input buckets and
distribute them to output buckets according to the ith MSB

Our Oblivious Permute -
Locality

0* 1*
MergeSplit

Bucket

A0 A1 A2 A3 A4 A5 A6 A7

i=0

i=1

i=2 00*

0* 0* 0* 1*1*1*

01* 10* 11* 00* 01* 10* 11*

000* 001* 010* 011* 100* 101* 110* 111*

Our Oblivious Permute -
Locality

0* 1*
MergeSplit

Bucket

A0 A1 A2 A3 A4 A5 A6 A7

i=0

i=1

i=2 00*

0* 0* 0* 1*1*1*

01* 10* 11* 00* 01* 10* 11*

000* 001* 010* 011* 100* 101* 110* 111*

Our Oblivious Permute -
Locality

0* 1*
MergeSplit

Bucket

A0 A1 A2 A3 A4 A5 A6 A7

i=0

i=1

i=2 00*

0* 0* 0* 1*1*1*

01* 10* 11* 00* 01* 10* 11*

000* 001* 010* 011* 100* 101* 110* 111*

Our Oblivious Permute -
Locality

0* 1*
MergeSplit

Bucket

A0 A1 A2 A3 A4 A5 A6 A7

i=0

i=1

i=2 00*

0* 0* 0* 1*1*1*

01* 10* 11* 00* 01* 10* 11*

000* 001* 010* 011* 100* 101* 110* 111*

Are We Done?
• Claim: for random assignment of destination buckets, overflow with only

negligible probability
• However this is not a permutation!

• The buckets are not permuted…
• We obliviously sort (bitonic sort) each bucket according to the final assignment

• BZlog2Z = n/log k * log k * log2logk = n log2logk
• Not a permutation, but composition works

• There is an easier solution if the CPU has non-constant size

Theorem:
There exists a statistically secure oblivious sort
algorithm that completes in O(n logn loglog2k) work
and (3,O(logn loglog2k))-locality

Conclusions
• We introduce locality in oblivious RAM
• Impossibility: locality without leakage of lengths

Security Space Bandwidth Locality Leakage

Range ORAM stat O(NlogN) L Õ(log3N) Õ(log3N) L

File ORAM comp O(N) L Õ(log2N) Õ(logN) L

ORAM stat O(N) L o(log2N) L o(log2N) none

• An intermediate result: Locality-Friendly oblivious sorting algorithms
• Perfect: O(N log2N)-work and (2,O(log2N))-locality
• Statistical: Õ(N logN)-work and (3,Õ(logN))-locality

Thank You!

