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secure processor

Access Pattern Leakage 
(or, why encrypting the data is insufficient?)
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Oblivious RAM 
(or - How to Hide the Access Pattern?)
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Oblivious RAM
•Introduced by Goldreich [STOC’87]  
• Informal definition:

•The access pattern can be simulated by 
the total number of Read/Write 
instructions that the program performs 

•Lower bound:  memory N
•Ω(log N) overhead for every operation  

•Recently - very interesting progress 
[GO96,BN16,LN18]



Known ORAMs

Hierarchical Tree based ORAM
[GO96,Kushilevitz,Lu,Ostrovsky12]

 [Stefanov,van Dijk,Shi,Chan, 
Fletcher,Ren,Yu,Devadas13] 

~O(log2N)



Locality
• A phenomenon:
if a program or application accesses some address it 

is very likely to access also a neighboring address
• Locality is everywhere:

• Physically: Rotational hard-drive are significantly faster 
when accessing sequential data than random seeks 

• Cache: Usually fetching neighboring data as well 
• Surfaced from implementations of Searchable 

Symmetric Encryption 
• A crucial efficiency measure!



Kidney  
Problem

Liver 
Problem

Heart  
Problem

Accessing Sequential Data?



Oblivious 
RAM

• ORAM completely destroys  
the locality of the program! 

• Accessing a single contiguous-region of size L 
results in  
accessing O(L log2N) non-contiguous blocks

Accessing Sequential Data?

Write(addr1,v)

Write(addr2,v)

Read(addr3)

v



Our Goal:  
ORAM with Locality

• ORAM that preserves the locality of the program: 
• If an incoming request access a possibly large 

contiguous region, then the ORAM should also 
access contiguous memory regions 

• Locality and obliviousness are contradicting goals! 
• ORAM must shuffle the data  

around the memory 
• Locality is usually achieved by  

highly structured memory layout



Related Work
• Locality in algorithms […Vitter01] 
• SSE does not scale well to big databases without 

considering locality [CJJKRS,CRYPTO’13] 
• Tradeoffs between obliviousness, space and locality 
• [Cash,Tessaro’14],[A,Naor,Segev,Shahaf’16],[Demertzis,Papamanthou’17],

[A,Segev,Shahaf’18],[Demertzis,Papadopoulos,Papamanthou’18] 
• Oblivious RAM and secure computation 

• [Gordon,Katz,Kolesnikov,Krell,Malkin,Raykova,Vahlis’12], 
[Gentry,Goldman,Halevi,Lu,Ostrovsky,Raykova,Wichs’14],
[Wang,Huang,Chan,shelat,Shi’14] 

• Garbled RAM [LuOstrovsky13,…] 
• Avishay’s talk (next)



Agenda
•Defining locality


• Impossibility result 

•Primitive I: Range ORAM


•Primitive II: File ORAM


•Locality-friendly oblivious sort



Defining Locality
• Locality: intuitively, number of sequential memory 

regions accessed during the execution of the program

Locality = 3

1 5 2 4 7 8 12 7 6 3 1 7 7 12 3 7
Inner product of two (long, say n) arrays?

1 disk, minimize “move” of the read/write head

Locality = O(n)

Locality = O(1)

1 5 2 4 7 8 12 7 6 3 1 7 7 12 3 7
Inner product of two (long) arrays — 2 read/write heads?



• We allow accessing H regions concurrently 
• Think of H different disks, or 
• A cache with H different lines, or 
• A disk with H read/write heads 

• Good locality = small H (O(1)), small L

Defining Locality

Definition:  
An algorithm / program is (H,L)-local  
if it performs L sequential read/writes from a memory that is 
equipped with H-heads



Impossibility Result*
• Local ORAM is impossible 

• ORAM must randomly permute elements around 
the memory 

• Must hide whether we have  
L requests of non-contiguous blocks or  
a single request of L contiguous blocks 

• We must relax our requirements 
• aka, leakage…

Theorem:  
Any (O(polylogN),O(polylogN))-local ORAM scheme would 
have inefficient bandwidth blowup Ω(N1-ϵ) for some constant ϵ

*In the balls and bins model



First Primitive: 
Range ORAM

Range 
ORAM

Write(addr1,length1,data)

Read(addr2,length2)

Leakage: 
length1
length2Local??

ORAM

Write(addr1,data)

Read(addr2)

Simulator receives number of read/write operations

Simulator receives length1,length2…



Our Results

Security Space Bandwidth Locality Leakage

Range ORAM stat O(NlogN) L Õ(log3N) Õ(log3N) L

ORAM stat O(N) L o(log2N) L o(log2N) none

• Impossibility: locality without leakage of lengths



On Leaking the Lengths

• Inherent: our lower bound…


• Strict generalization of ORAM


• The client can choose when and what to leak


• In many applications, ordinary ORAM also leaks sizes 
when accessing a region of length L

• via communication volume [KellarisKolliosNissim16]


• Possible extension:  
add differential privacy to mitigate the leakage



Second Primitive:  
File ORAM

Range 
ORAM

Write(addr1,length1,data)

Read(addr2,length2)

Leakage: 
length1
length2For all addresses, all possible lengths are allowed 

File 
ORAM

Write(fid1,data)

Read(fid2)

Leakage: 
length(fid1)
length(fid2)

The possible (addr,length) are known in advance 
 and do not overlap



Our Results
• Impossibility: locality without leakage of lengths

Essentially, locality for free!

Security Space Bandwidth Locality Leakage

Range ORAM stat O(NlogN) L Õ(log3N) Õ(log3N) L

File ORAM comp O(N) L Õ(log2N) Õ(logN) L

ORAM stat O(N) L o(log2N) L o(log2N) none



Our Results
• Impossibility: locality without leakage of lengths

Security Space Bandwidth Locality Leakage

Range ORAM stat O(NlogN) L Õ(log3N) Õ(log3N) L

File ORAM comp O(N) L Õ(log2N) Õ(logN) L

ORAM stat O(N) L o(log2N) L o(log2N) none

• An intermediate result: Locality-Friendly oblivious sort 
• Perfect:     O(N log2N)-work and (2,O(log2N))-locality
• Statistical: Õ(N logN)-work and (3,Õ(logN))-locality



This Talk
• Impossibility: locality without leakage of lengths

Security Space Bandwidth Locality Leakage

Range ORAM stat O(NlogN) L Õ(log3N) Õ(log3N) L

File ORAM comp O(N) L Õ(log2N) Õ(logN) L

ORAM stat O(N) L o(log2N) L o(log2N) none

• An intermediate result: Locality-Friendly oblivious sort  
• Perfect:     O(N log2N)-work and O(log2N)-locality
• Statistical: Õ(N logN)-work and Õ(logN)-locality



File ORAM: Construction
File 

ORAM

Write(fid1,data)

Read(fid2)

Leakage: 
length(fid1)
length(fid2)

Non-Recurrent 
Oblivious File Hashing 

Scheme
File ORAMOblivious Sort



Non-Recurrent File Hashing 
Scheme with Locality

• Functionality:  
• Build(X) : Given an array with files data, build structure 

• Each element: (fid,offset,data) 
• Read(fid,len): returns all elements with fid  

Supports also fake fid=*

• Obliviousness: instructions 
(Build(X),Read(fid1,len1),Read(fid2,len2),…,)  
with non-recurrent fid (except for *) can be simulated from 
(|X|,len1,len2,…)

How to build such a primitive with “good” locality?



Two-Dimensional Allocation



Two-Dimensional Allocation



Two-Dimensional Allocation

Place the whole file according to  
a single probabilistic choice!



Two-Dimensional Allocation
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Two-Dimensional Allocation



Two-Dimensional Allocation



Two-Dimensional Allocation



Two-Dimensional Allocation



Two-Dimensional Allocation



Two-Dimensional Allocation

What is the maximal load?

Pad with dummies 



How Do We Search?
Read(       ,5)

5

Overhead = bin size



How Do We Search?
Read(*, L)

Just access random L consecutive bins

L

(*=fake fid)

Overhead = bin size



Two-Dimensional Allocation 
[AsharovNaorSegevShahaf’16]

• This yields a Non-Recurrent File Hashing Scheme 
with: 
• Space: B x Z = O(|X|) 
• Locality (Search): O(1) 
• Bandwidth: Õ(log k)

• How to perform Build(X) obliviously?

Theorem:  
Set B=|X|/O(log k loglog k) (where k is the security parameter). 
Then, with an overwhelming probability, the maximal load is 
Z=3logk loglogk



Implementing Build Obliviously Using 
Locality-Friendly Oblivious-Sort

Input: Array X. Each element of the format (fid,offset,data)



Build
Input: Array X. Each element of the format (fid,offset,data)
• Choose a random PRF key K 
• Assign to each element its dest bin: PRFK(fid)+offset
• Add ZB new dummy elements (doubles the structure) 

• Assign Z dummy elements for each bin 
• Oblivious sort according to the new assignment 
• Scan and mark all exceeded elements 
• Oblivious sort again, sending all exceeded elements to the very end 
• Truncate the array, removing the dummy elements

Oblivious Sort?



Build
Input: Array X. Each element of the format (fid,offset,data)
• Choose a random PRF key K 
• Assign to each element its dest bin: PRFK(fid)+offset
• Add ZB new dummy elements (doubles the structure) 

• Assign Z dummy elements for each bin 
• Oblivious sort according to the new assignment 
• Scan and mark all exceeded elements 
• Oblivious sort again, sending all exceeded elements to the very end 
• Truncate the array, removing the dummy elements

Z=bin size 
B=number of bins



Build
Input: Array X. Each element of the format (fid,offset,data)
• Choose a random PRF key K 
• Assign to each element its dest bin: PRFK(fid)+offset
• Add ZB new dummy elements (doubles the structure) 

• Assign Z dummy elements for each bin 
• Oblivious sort according to the new assignment 
• Scan and mark all exceeded elements 
• Oblivious sort again, sending all exceeded elements to the very end 
• Truncate the array, removing the dummy elements

Z=bin size 
B=number of bins



Build
Input: Array X. Each element of the format (fid,offset,data)
• Choose a random PRF key K 
• Assign to each element its dest bin: PRFK(fid)+offset
• Add ZB new dummy elements (doubles the structure) 

• Assign Z dummy elements for each bin 
• Oblivious sort according to the new assignment 
• Scan and mark all exceeded elements 
• Oblivious sort again, sending all exceeded elements to the very end 
• Truncate the array, removing the dummy elements

(in each bin, number of exceeded elements = number of real elements)



Build
Input: Array X. Each element of the format (fid,offset,data)
• Choose a random PRF key K 
• Assign to each element its dest bin: PRFK(fid)+offset
• Add ZB new dummy elements (doubles the structure) 

• Assign Z dummy elements for each bin 
• Oblivious sort according to the new assignment 
• Scan and mark all exceeded elements 
• Oblivious sort again, sending all exceeded elements to the very end 
• Truncate the array, removing the dummy elements



File ORAM: Construction

Non-Recurrent 
Oblivious File Hashing 

Scheme
File ORAMOblivious Sort

T0

T1

T2

T3

TlogN

ready

empty

20

21

22

23

2logN

…

Hierarchical construction:  
Instead of a hash table in each level [GO’96] 

we use non-recurrent oblivious file hashing scheme



This Talk
• Impossibility: locality without leakage of lengths

Security Space Bandwidth Locality Leakage

Range ORAM stat O(NlogN) L Õ(log3N) Õ(log3N) L

File ORAM comp O(N) L Õ(log2N) Õ(logN) L

ORAM stat O(N) L o(log2N) L o(log2N) none

• An intermediate result: Locality-Friendly oblivious sort  
• Perfect:     O(N log2N)-work and O(log2N)-locality
• Statistical: Õ(N logN)-work and Õ(logN)-locality



First Primitive: 
Range ORAM

Range 
ORAM

Write(addr1,length1,data)

Read(addr2,length2)

Leakage: 
length1
length2Local??



Read Only Range ORAM
ORAM 

B=1
ORAM 
B=21

ORAM 
B=22

ORAM 
B=2logN

• Store multiple copies of the data

• logN ORAMs, each based on a different block-size B


• Read(addr,2i) - fetches 2 blocks from the ith ORAM

• Leaks L=2i


• Space: O(NlogN), Bandwidth: o(Llog2N), locality o(Llog2N)

…

But.. what should we do with writes?
Write(31,data,1) Read(16,data,64)

Write(17,data,1)



Range ORAM

• Range Trees


• Dealing with multiple copies of the data

• Data coherency


• Extensions: Online Range Data


• Perfect Security



This Talk
• Impossibility: locality without leakage of lengths

Security Space Bandwidth Locality Leakage

Range ORAM stat O(NlogN) L Õ(log3N) Õ(log3N) L

File ORAM comp O(N) L Õ(log2N) Õ(logN) L

ORAM stat O(N) L o(log2N) L o(log2N) none

• An intermediate result: Locality-Friendly oblivious sort  
• Perfect:     O(N log2N)-work and O(log2N)-locality
• Statistical: Õ(N logN)-work and Õ(logN)-locality



Oblivious Sorting
• Tremendous amount of applications… 

• Asymptotically best known oblivious sorts are O(nlogn) work  
(but not locality-friendly) 
• AKS (1983) - based on expanders, theoretical 
• ZigZag sort (Goodrich, STOC’14) 

• Very large constants.. 
• Randomized Shell Sort [Goodrich’11] — not local 

• In practice: Batcher (1968) — O(n log2n) 
• Good locality, (perfect!) — not asymptotically optimal 

• If we want Range ORAM and File ORAM with efficiency 
comparable to ordinary ORAM — we need a better oblivious sort



Locality-Friendly  
Oblivious Sort

Oblivious Local Complexity

Merge Sort

Bitonic Sort

Our Sort



Merge Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort

Our Sort
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Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort

Our Sort

1  4  5  10  16  25 2  3  6  8  12  15

1                                                                ,
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Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort

Our Sort
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Merge Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort

Our Sort

1  4  5  10  16  25 2  3  6  8  12  15

1   2   3                                                       ,



Merge Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort

Our Sort

1  4  5  10  16  25 2  3  6  8  12  15

1   2   3   4   5   6   8   10   12   15   16   25



Bitonic Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort ✔ ✔ O(Nlog2N)

Our Sort

• Batcher sorting:
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Bitonic Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ O(NlogN)

Bitonic Sort ✔ ✔ O(Nlog2N)

Our Sort

• Batcher sorting:



Our Sort
Oblivious Local Complexity

Merge Sort ✗ ✔ (3 heads) O(NlogN)

Bitonic Sort ✔ ✔ (2 heads)  O(Nlog2N)

Our Sort ✔ ✔ (3 heads) O(NlogN loglog2k)

Oblivious Permute
500   1234   2323  5566   111  444   8696   1122  5927  2937  2911

8696  2323  1234  1122  2937  5566  500  2911  111  5927  444

Non-Oblivious Sort
111  444  500   1122  1234  2323  2911  2937  5566  5927  8986

Oblivious Permute + Non-Oblivious Sort = Oblivious Sort

Merge Sort

Statistical 
 security

Perfect 
 security



Our Oblivious Permute
• We show how to implement oblivious permutation with “slack” 

• introducing some “dummy” values between real-values 
• Interpret the input array as B buckets of size Z each  

(Z=poly log k, B=N/Z, k is the security parameter) 

• Add a bucket of dummy elements between two “real” buckets 
• Assign to each element a random destination bin [1,…,B]

(We later remove these dummy elements using the non-oblivious sort)

real dummy

Z
2B



Our Oblivious Permute
A0 A1 A2 A3 A4 A5 A6 A7

i=0

i=1

i=2

0*

00*

0* 0* 0* 1*1*1*1*

01* 10* 11* 00* 01* 10* 11*

000* 001* 010* 011* 100* 101* 110* 111*

MergeSplit

Bucket
 



Our Oblivious Permute

0* 1*
MergeSplit

Bucket

A0 A1 A2 A3 A4 A5 A6 A7

i=0

i=1

i=2 00*

0* 0* 0* 1*1*1*

01* 10* 11* 00* 01* 10* 11*

000* 001* 010* 011* 100* 101* 110* 111*

 

MergeSplit - takes all read elements in input buckets and 
distribute them to output buckets according to the ith MSB



Our Oblivious Permute - 
Locality

0* 1*
MergeSplit

Bucket

A0 A1 A2 A3 A4 A5 A6 A7

i=0

i=1

i=2 00*

0* 0* 0* 1*1*1*

01* 10* 11* 00* 01* 10* 11*

000* 001* 010* 011* 100* 101* 110* 111*

 



Our Oblivious Permute - 
Locality

0* 1*
MergeSplit

Bucket

A0 A1 A2 A3 A4 A5 A6 A7

i=0

i=1

i=2 00*

0* 0* 0* 1*1*1*

01* 10* 11* 00* 01* 10* 11*

000* 001* 010* 011* 100* 101* 110* 111*

 



Our Oblivious Permute - 
Locality

0* 1*
MergeSplit

Bucket

A0 A1 A2 A3 A4 A5 A6 A7

i=0

i=1

i=2 00*

0* 0* 0* 1*1*1*

01* 10* 11* 00* 01* 10* 11*
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Our Oblivious Permute - 
Locality

0* 1*
MergeSplit

Bucket

A0 A1 A2 A3 A4 A5 A6 A7

i=0

i=1

i=2 00*

0* 0* 0* 1*1*1*

01* 10* 11* 00* 01* 10* 11*

000* 001* 010* 011* 100* 101* 110* 111*

 



Are We Done?
• Claim: for random assignment of destination buckets, overflow with only 

negligible probability 
• However this is not a permutation!  

• The buckets are not permuted… 
• We obliviously sort (bitonic sort) each bucket according to the final assignment 

• BZlog2Z = n/log k * log k * log2logk = n log2logk 
• Not a permutation, but composition works 

• There is an easier solution if the CPU has non-constant size

Theorem:
There exists a statistically secure oblivious sort 
algorithm that completes in O(n logn loglog2k) work 
and (3,O(logn loglog2k))-locality



Conclusions
• We introduce locality in oblivious RAM 
• Impossibility: locality without leakage of lengths

Security Space Bandwidth Locality Leakage

Range ORAM stat O(NlogN) L Õ(log3N) Õ(log3N) L

File ORAM comp O(N) L Õ(log2N) Õ(logN) L

ORAM stat O(N) L o(log2N) L o(log2N) none

• An intermediate result: Locality-Friendly oblivious sorting algorithms  
• Perfect:     O(N log2N)-work and (2,O(log2N))-locality
• Statistical: Õ(N logN)-work and (3,Õ(logN))-locality

Thank You!


