Efficient MPC From Syndrome Decoding

Or: Honey, I Shrunk the Keys

Carmit Hazay, Emmanuela Orsini, **Peter Scholl** and Eduardo Soria-Vazquez

Secure Multi-Party Computation

Properties of secure computation protocols

- Computational model: Boolean/arithmetic circuits, RAM
- Adversary model:
 - Passive (semi-honest) or active (malicious)
 - Threshold t (number of corrupted parties)
- Efficiency:
 - Round/communication complexity
 - Computation

MPC setting in this talk

Main focus:

• Concrete efficiency for large numbers of parties (e.g. *n* in 10s, 100s)

Adversary:

- Static, passive
- Dishonest majority (t > n/2)

Model of Computation:

- Boolean circuits
- Preprocessing phase

Motivation for large-scale, dishonest majority MPC

Large number of clients/users want to aggregate data, statistical analysis, surveys etc.

• E.g. statistics on Tor network activity, blockchain miners, app users etc.

Main question

Can we trade off the number of corrupt parties for a more efficient, practical protocol?

Corruption thresholds vs communication complexity of *practical* MPC

AARHUS UNIVERSITY

Naive committee-based approach for *t* corruption

Savings from naive committee approach with 200 parties and GMW protocol

variant of GMW by [Dessouky Koushanfar Sadeghi Schneider Zeitouni Zohner 17]

An asymptotically better approach using random committees

[Bracha '87]

- Suppose $t = \epsilon n$ for constant $\epsilon \in (0,1)$
- Sample random committee C of size k
 - C runs threshold-(n-1) MPC protocol
 - Complexity: $O(k^3)$ per AND gate
- Pr[C is all corrupt] is $\binom{t}{k} / \binom{n}{k}$
 - negl(k) for large enough n
 - k can be independent of n

Can we do better? What about for smaller n?

New approach: short keys for secure computation

- Key idea:
 - "Weaken" existing protocol for n-1 corruptions by shrinking secret keys
 - Rely on concatenation of all honest parties' keys for security

New MPC protocols with short keys and fewer corruptions

More honesty \Rightarrow shorter keys \Rightarrow more efficiency

Toy example: simple distributed encryption scheme

• Key distributed across n servers

- Hard to guess m if at least one $k_i \in \{0,1\}^{\lambda}$ is unknown
- What is *h* keys are unknown?
 - Can k_i be smaller?

Why should this work?

- Let $H_i: \{0,1\}^{\ell} \to \{0,1\}^r$ be a hash function
- Want

 $\sum_{i=1}^{n} H_i(k_i)$ to be pseudorandom when $k_i \leftarrow \{0,1\}^{\ell}$ and h keys are unknown

Regular syndrome decoding problem

- Sample random $H \in \{0,1\}^{r \times m}$, and regular $e \in \{0,1\}^m$ of weight h
- Given H and y = He, find e.

Equivalence of sum of hashes and regular syndrome decoding

- Fill columns of $H \in \{0,1\}^{r \times m}$ with all hash values $H_i(j)$
- Regular error vector e corresponds to keys k_i

Hardness of regular syndrome decoding

- Parameters:
 - Key length ℓ , # keys h, output length r
- Used for SHA-3 candidate FSB [Augot Finiasz Sendrier 03]
 - Not much easier than syndrome decoding \Leftrightarrow LPN
- Search-to-decision reduction (finding *e* as hard as distinguishing *He* from random)

• Statistically hard for small r/large h

Protocol I: GMW-style MPC based on OT extension with short keys

[Goldreich Micali Wigderson '87]

I-out-of-2 Oblivious Transfer

I-out-of-2 Oblivious Transfer gives secretshared multiplication

"IKNP" OT extension technique: converting k "seed" OTs into $m \gg k$ OTs

[Ishai Kilian Nissim Petrank 03]

OT extension with short keys and leakage

Using leaky OT for GMW-style MPC

- First attempt: see what happens
 - Multiply shared [x] and [y] with GMW
 - Every pair (P_i, P_j) :

• Compute [*xy*] from

$$xy = (x_1 + \dots + x_n)(y_1 + \dots + y_n) = x_1y_1 + \dots + x_iy_j + \dots + x_ny_n$$

Problem: leakage on x_i with every corrupt party P_j \Rightarrow whp x_i leaks entirely if enough corruptions

Using leaky OT for GMW-style MPC

 Second attempt: rerandomize shares before multiplying
P_i inputs (x_i+s_{ij}) instead of x_i for random s_{ij} ∈ {0,1} such that ∑_i s_{ij} = 0

$$(x_1+s_{11})y_1 + \dots + (x_i+s_{ij})y_j + \dots + (x_n+s_{nn})$$

$$= xy$$

+ $(s_{11} + \dots + s_{n1})y_1$
...
+ $(s_{1n} + \dots + s_{nn})y_n = xy$

What about the leakage?

- All inputs with leakage masked by shares of zero
- Only need to consider sum of all leakage on secret $x = \sum_i x_i$
- Leakage is equivalent to:

$$\sum_{i} H(i, \Delta_i) + x$$

Pseudorandom by regular syndrome decoding assumption

Parameters and efficiency of GMW-based protocol

- Typically, each key can be used for r = 300-500 triples
- 1-bit keys when h > s + r (e.g. s = 40 for stat. security)
 - Triple cost $\approx 3nt$ bits comm.
 - Assumes OT + OWF only (no RSD)

vs $O(n^2k/\log k)$ for full-threshold

Reduction in communication from GMW with short keys (200 parties)

Protocol 2: BMR-based MPC based on multi-party garbled circuits with short keys

[Beaver Micali Rogaway '90]

Garbling an AND gate with Yao

u

V

Garbling an AND gate with Yao

 $E_{A_0,B_0}(C_0)$ $E_{A_0,B_1}(C_0)$ $E_{A_1,B_0}(C_0)$ $E_{A_1,B_1}(C_1)$

- Pick two random keys for each wire
- Encrypt the truth table of each gate

- Randomly **permute** entries
- Invariant: evaluator learns one key per wire throughout the circuit

BMR with short keys: a few technical challenges

- Reusing keys reduces security in regular syndrome decoding
- Problem for:
 - High fan-out
 - Free-xor
- Solution:
 - Splitter gates [Tate Xu 03] can be garbled for free
 - Local free-XOR offsets

BMR with short keys: pros and cons

• Garbled AND gate:

- $4n\ell + 1$ bits vs 4nk bits previously
- ℓ as small as 8
- Preprocessing phase:
 - Less communication using short keys
- Online phase:
 - $O(\frac{n^2\ell}{k})$ hash evaluations per garbled gate, vs $O(n^2)$ previously*
 - Need splitter gates: \approx I splitter per (XOR/AND) gate

*or O(1) using DDH/LWE [Ben-Efraim Lindell Omri 17]

Communication cost of garbling an AND gate (200 parties)

Conclusion and future directions

- New technique for distributing trust in MPC
- More efficient protocols for 20+ parties
 - Also helps large-scale protocols with random committees

Future challenges:

- Active security
 - Information-theoretic MACs with short keys
- Arithmetic circuits
- Adaptive security
- Optimizations, cryptanalysis