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Abstract 

With a single harvest a year the efficient processing of harvested hops is of great economic importance to growers. 

On top of this, the importance of drying immediately after harvest means that batches of hops should be dried in 

succession in an efficient manner in order to ensure both minimal product wastage and a consistent output quality level. 

Quality here refers to moisture content and colour of the dried hops. To investigate these during drying both a 

hyperspectral and a calibrated RGB camera were installed within a pilot scale dryer along with their illumination sources. 

During drying hops were imaged by both systems, while samples were removed for moisture content analysis. This 

enabled chemometric investigations into the prediction of moisture and chromatic information with a reduced wavelength 

set. Moisture content prediction was shown to be feasible (r2=0.94, RMSE=0.27) for the test set using 8 wavelengths. 

CIELAB a* prediction was also seen to be feasible (r2=0.75, RMSE=3.75), alongside CIELAB b* prediction (r2=0.52 

and RMSE=2.66). Future work to improve the current predictive models is also outlined.  
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1. Introduction 

 

The successful and efficient drying of hops, with one harvest a year, is of great economic importance to hop farmers. 

More so than other crops, hops are required to be dried immediately after harvesting to prevent any degradation in both 

colour and chemical content. This requirement for immediacy has led to farmers drying their hop harvest themselves on 

site and means they effectively need to be a jack-of-all-trades. This method of operation means that large amounts of 

hops are required to be dried in a very small timescale on site, and any method which can improve both the automation, 

efficiency of the process and the quality of the output product will be of great help.  

To aid farmers in determining when hops have reached their desired moisture content currently temperature and 

humidity sensors are usually placed within the hop stack during drying. This method works well as a local (in spatial 

terms) non-destructive method to determine hop moisture content. However large variations in moisture content may 

exist within the overall hop stack, this method also ignores any potential monitoring of chromaticity change in the 

product. As such the potential for a method to non-destructively monitor chromaticity and moisture content over the 

entire hop stack could bring great benefits to the hop drying industry. Hyperspectral imaging (HSI) offers a potential 

single solution to investigate both chromaticity and chromatic changes in the hops continuously during drying (Pu & Sun, 

2015; Wu et al., 2013; Wu, Shi, et al., 2012).  The results presented here show the results of an investigation into the 

prediction of moisture content and chromaticity of hops. 

 

2. Materials and Methods 

 

All investigations were undertaken at the Research Station Hüll, Hallertau, Bavaria. The Mandarina hop variety was 

investigated, with all hops tested having been harvested immediately before drying (<60 minutes delay). A number of 

different drying conditions and hop bulk weights were tested. Three bulk weights of 12, 20 and 40kg/m2 of hops were 

tested at three different process settings. These process settings were those of 1-3) 65°C air temperature with an air speed 

of 0.35m/s at each bulk weight, and 4) 70°C with an air speed of 0.35m/s with a bulk weight of 20kg. Each of these was 

replicated a total of 3 times. All tests were undertaken during the September 2015 harvest over 5 consecutive days to 

keep variations due to different ripeness as minimal as possible. 

In order to carry out chromatic measurements a calibrated RGB camera was also placed within the dryer to monitor 

colour change, this was installed alongside the hyperspectral camera. This enabled hyperspectral measurements to be 

carried out at specific time points during drying and compared to captured colour data from the same time points. 

Hyperspectral images were captured at 0, 10, 20, 30, 40, 70, 100, 130 and 160 minutes for 20Kg at 65°C (Drying times 

were also varied for different conditions; up to 130 minutes for 70°C, and up to 220 minutes (190, 220) for 40Kg at 
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65°C) . In order to carry out the calibrated CIELAB capture correctly the halogen light source was turned off prior to 

RGB image capture (leaving only the 6500K fluorescent sources on). At these time points a portion (1600ml in 

volumetric terms) of the imaged samples (hyperspectral) were removed. A subset of this sample was utilised for moisture 

content analysis using the gravimetric weighing method.  

Image capture at these set time intervals across the 4 different drying conditions led to the capture of 108 

hyperspectral images and 108 corresponding calibrated RGB images. 2 hyperspectral images were subsequently 

discarded due to capture error, so all subsequent analysis was performed upon 106 images. 

 

2.1. Imaging and drying set-up  

To enable the imaging of hops during drying, within the dryer, a Specim V10E hyperspectral camera (Specim 

Spectral Imaging Ltd., Finland) was placed inside a protective casing within the dryer above the hop stack. The camera 

was used in combination with a mirror translation unit and a 35mm Schneider lens (Xenoplan 1.9/35, Schneider Optische 

Werke GmbH, Germany). Illumination was provided using a halogen security lamp fitted with a 500W halogen bulb, the 

lamp was attached on the interior wall of the dryer focused at the region directly beneath the camera system (Figure 1). 

The protective casing was constructed of steel, with an insulated lining. The casing also had a viewing window covered 

with a clear acrylic window sheet (Figure 1). This allowed the camera to view the hops situated directly below. This 

protective casing also provided ventilation to the camera during operation. 

 
Figure 1. The design of the illumination and protective casing for the camera within the drying chamber. 

 

This protective casing was attached to the interior of an experimental dryer above the top drying tray as outlined by 

Hofmann et al. (2013). This set up is shown in Figure 2 below. 

                        
Figure 2. Location of imaging box in chamber, alongside CCD camera and illumination. 

 

The lens was of a manual focus type and was focused at a specific hop depth, as such increasing blur did occur 

towards the lowest hop depths. 
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2.2. RGB imaging 

 

In order to facilitate the chromatic measurement of hops during drying a RGB CCD camera was also positioned 

within the dryer, as shown previously in Figure 2. The system utilised a colour DFK 72AUC02-F (The Imaging Source, 

Germany) of resolution 1944*2592 (H*W). Illumination was provided by 2 Philips fluorescent light sources (Philips, 

Netherlands) of CCT 6500K and luminance of 2100 Lumens each.  

 

2.3. RGB camera calibration 

 

Color calibration of the RGB camera (The Imaging Source, Germany) was achieved through the polynomial color 

correction (Finlayson et al., 2015a). For calibration an X-Rite Color Checker Classic 24 patch chart (X-Rite Inc., 

Michigan, USA) was imaged using a set exposure in conjunction with a calibrated Q mini spectrophotometer (RGB 

Lasersystems, Germany). Polynomial color correction rather than root polynomial color correction (Finlayson et al., 

2015b) was utilized due to the use of a single exposure for imaging during the drying process. Colourimteric data of each 

patch was then measured using a calibrated spectrometer (Q mini, RGB Photonics GmbH, Kelheim, Germany). The 

measured colorimetric XYZ values were then regressed alongside the measured average patch RGB values after 

subtraction of the average black patch RGB values. This produced a polynomial function which allowed the calculation 

of XYZ co-ordinates from measured RGB values. These calculated XYZ values were then converted into CIELAB co-

ordinates using illuminant D65 as the reference white point, with a luminance value equal to the luminance of the white 

patch under the test illumination. 

 

2.4. Hyperspectral Image Processing 

Hyperspectral cubes were recorded using the Specim SpectralDAQ software (Specim Spectral Imaging Ltd., Finland), 

with all processing occurring within Matlab using software previously utilised in Crichton, Sturm, & Hurlbert (2015) and 

Crichton et al. (2016). Noise removal was carried out in the same manner presented in (Crichton et al., 2015). 

However due to the nature of product shrinkage during drying conversion from irradiance to reflectance spectra 

involved the measurement of the incident illumination at a number of different heights and the resulting illumination field 

was smoothed with a small window operator to remove the influence of the non-perfectly uniform surface of the white 

reference tile. This height dependent illumination data was then utilised in combination with hop height measurements 

carried out at each sample period. Height dependent changes in the illumination field are shown in Figure 3. 
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Figure 3. An illustration of how the intensity (at 669nm) and spatial distribution of illumination varies upon the hops 

as the hop height changes from a reference point at a) 5cm, b) 10cm and c) 15cm. 

Images were then processed with the corresponding white reference image to produce the reflectance image on a 

pixel-by-pixel basis. Figure 4 illustrates the effect of conversion from irradiance to reflectance upon the calculated sRGB 

image from an example hyperspectral image. 

 
 

Figure 4. Comparison between the sRGB image of the a) irradiance image, and b) the reflectance image. 

However the nature of the hops being imaged and singular illumination direction led to challenges in image 

processing, which required further use of pre-processing methods. Both of these factors meant that when hops across the 

region of interest were analysed a great variation in spectral intensity existed. An example of this is shown below in 

Figure 5. 
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Figure 5. Illustration of the variation in the normalised reflectance for pixels at 669nm due to illumination geometry and 

hop distribution. 

 

In order to counteract this, two different normalisation pre-processing methods (Amigo, Martí, & Gowen, 2013) were 

used; Normalisation and Standard Normal Variate (SNV). Using these two methods had the effect of minimising the 

baseline variation between pixels related to hop surface topology, as seen in Figure 6 below. 
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Figure 6. Illustrating the variation in irradiance due to the non-uniform topology of hops in a) the original image, and b) 

the effect of SNV pre-processing used to remove it. 

 

2.5. Statistical analysis 

 

After the retrieval of the average pre-processed reflectance spectra from each image partial least squares regression 

(PLSR) analysis was performed upon the retrieved spectra against the measured moisture content and CIELAB chromatic 

co-ordinates retrieved from the calibrated RGB images. PLSR analysis was performed upon the normalised and SNV 

data. PLSR is the most common method for investigating the feasibility of metric prediction in combination with 

spectroscopy and hyperspectral imagining. It attempts to uncover if any of the retrieved wavelengths vary in a linear 

manner with respect to the metric investigated. Previous investigations have looked into moisture prediction (ElMasry, 

Wang, ElSayed, & Ngadi, 2007; Huang, Wang, Zhang, & Zhu, 2014; Pu, Feng, & Sun, 2015), chromaticity (Iqbal, Sun, 
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& Allen, 2013; Wu, Sun, & He, 2012), maturity (Rajkumar, Wang, EImasry, Raghavan, & Gariepy, 2012) and pH levels 

(He, Wu, & Sun, 2014) amongst many other metrics. 

For the statistical investigations the measured hops were split into the calibration and test sets on a random 2:1 ratio, 

on the basis of replicate number. Furthermore each model was cross validated for a total of 10 times to ensure all 

combinations of calibration and test sets were tested. 

 

3. Results and Discussion 

The first stage of results is that of the retrieved average spectra for a given batch of hops during the drying process. 

Figure 7 illustrates the variation in normalised reflectance for the 12kg hop batch dried at 65°C with an air speed of 0.35 

m/s. 
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Figure 7. Variation in normalised hop reflectance across a) 500-1010nm, and b) 700-1010nm. 

 

Figure 7a. illustrates the most usable wavelength region from 500 – 1010nm, this is due to the low emission of the 

halogen light source below 500nm. However it can also be noted that the retrieved reflectance information is greater 

above 700nm. With this is mind the PLSR analysis was undertaken in the 500-1010nm range. The green peak present at 

roughly 550nm (Figure 7a.), is reduced in size as drying occurs. Also of great interest is how the peaks and troughs 

present in the 700-1010nm region are removed as drying occurs. The trough at roughly 970nm is known to be directly 

related to the third overtone of the O-H bonds within water molecules. Figures 8 and 9 illustrate the changes in moisture 

content, CIELAB a* and CIELAB b* across the same drying time points for comparison. 
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Figure 8. Moisture content change during drying for the hops shown within Figure 8. 
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Figure 9. Chromatic changes during drying upon CIELAB a) a*, and b) b* co-ordinates 

 

 

Table 1. PLSR Results 

Pre-

processing 

Quality 

Metric 
                  Full Wavelength Set Reduced Wavelength Set 

Wavelengths 

              Calibration Test Calibration Test  

  R2 RMSE R2 RMSE R2 RMSE R2 RMSE  

Normalised M.C. 

 

CIELAB a* 

 

CIELAB b* 

         1.00 

 

         0.99 

 

         0.99 

0.05 

 

0.62 

 

0.47 

0.96 

 

0.71 

 

0.43 

0.21 

 

3.62 

 

2.71 

0.96 

 

0.89 

 

0.75 

0.22 

 

2.49 

 

2.22 

0.94 

 

0.68 

 

0.52 

0.27 

 

4.08 

 

2.66 

[508, 697, 741, 768, 

814, 844, 918,1000] 

[501, 697, 753, 768, 

793, 827, 966, 985] 

[507, 714, 753, 822, 

928, 1010] 

SNV M.C. 1.00 0.03 0.95 0.24 0.95 0.25 0.91 0.33 [501, 560, 664, 816, 

847, 915] 

 CIELAB a* 1.00 0.45 0.68 3.97 0.88 2.68 0.75 3.75 [508, 557, 756, 766, 

807, 839, 953, 971, 

985, 993] 

 CIELAB b* 0.99 0.37 0.38 2.90 0.84 1.69 0.37 3.27 [501, 545, 658, 700, 

755, 769, 807, 927, 

967, 982, 1007] 

     

 

The results of the models developed above show that basic prediction of hop moisture content and CIELAB 

chromaticity can indeed be carried out. Moisture content estimation can be carried out to a lower error using the 

normalised retrieved spectra during drying. This produces a model which uses only 8 wavelengths and achieves a test set 

r2=0.94 and RMSE=0.27 in comparison to r2=0.91 and RMSE=0.33 for the SNV based model (6 wavelengths). This level 

of performance, when compared to the moisture content change shown in Figure 8, can be seen to be useful up until the 

last stages of drying. However the consistent RMSE performance between the calibration and test sets for the reduced 

wavelength set shows the importance of the selected wavelengths. The large variation between the full wavelength set 

models however does point to a problem with overfitting to the calibration set, which may have been caused by any 

variation in initial hop quality. 

However CIELAB a* prediction can be seen to be better serviced using the SNV spectra with test set results of 

r2=0.75 and RMSE=3.75. Whilst for CIELAB b* prediction use of the normalised spectra led to the best performing 

model with test set performance of r2=0.52 and RMSE=2.66. Both of these chromaticity prediction models can be seen to 

not be accurate enough when using Figure 9 as a reference. 

The current predictive models are at a usable level of performance, however the possibility to improve them exists. A 

number of future changes will involve altering the illumination utilised for hyperspectral imaging. This will involve the 

usage of an illumination which includes a greater output within the blue-green region of electromagnetic space (400-

600nm) in an attempt to equalise it. This will give more information for both moisture content and chromatic prediction 

models. On top of this other spectral pre-processing methods such as use of 1st and 2nd order derivatives in combination 

to Savitzky-Golay filtering will also be investigated.  
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4. Conclusions 

The work shown here has illustrated the feasibility of moisture content and chromatic information prediction during 

hop drying using a novel dryer and imaging system. The developed models has shown a level of acceptable performance, 

with future improvements likely to enhance this further. The design and combination of the hyperspectral and RGB 

imaging systems within the hop dryer are also noted to be novel and have shown a new manner in which hops can be 

monitored, in real time, during drying. Future work to improve the predictive models has also been outlined.   

  

Acknowledgements 

The Authors give thanks to the University of Kassel for their financial support in the framework of 

Nachwuchsgruppen program and also to HVG Hopfenverwertungsgenossenschaft e.G..   

 

References 

 

 

Amigo, J. M., Martí, I., & Gowen, A. (2013). Hyperspectral Imaging and Chemometrics. A Perfect Combination for the 

Analysis of Food Structure, Composition and Quality. Data Handling in Science and Technology, 28, 343–370. 

http://doi.org/10.1016/B978-0-444-59528-7.00009-0 

Crichton, S., Sturm, B., & Hurlbert, A. (2015). Moisture content measurement in dried apple produce through visible 

wavelength hyperspectral imaging. In 2015 ASABE Annual International Meeting (p. 1). 

Crichton, S., Shrestha, L., Hurlbert, A., & Sturm, B. (2016), Predicition of moisture content and chromaticity of raw and 

pre-treated apples slices during convection drying using hyperpsectral imaging. Journal of Food Engineering 

(Submitted) 

ElMasry, G., Wang, N., ElSayed, A., & Ngadi, M. (2007). Hyperspectral imaging for nondestructive determination of 

some quality attributes for strawberry. Journal of Food Engineering, 81, 98–107. 

http://doi.org/10.1016/j.jfoodeng.2006.10.016 

Finlayson, G. D., MacKiewicz, M., & Hurlbert, A. (2015). Color Correction Using Root-Polynomial Regression. IEEE 

Transactions on Image Processing, 24(5), 1460–1470. http://doi.org/10.1109/TIP.2015.2405336 

He, H. J., Wu, D., & Sun, D. W. (2014). Rapid and non-destructive determination of drip loss and pH distribution in 

farmed Atlantic salmon (Salmo salar) fillets using visible and near-infrared (Vis-NIR) hyperspectral imaging. Food 

Chemistry, 156, 394–401. http://doi.org/10.1016/j.foodchem.2014.01.118 

Huang, M., Wang, Q., Zhang, M., & Zhu, Q. (2014). Prediction of color and moisture content for vegetable soybean 

during drying using hyperspectral imaging technology. Journal of Food Engineering, 128, 24–30. 

http://doi.org/10.1016/j.jfoodeng.2013.12.008 

Iqbal, A., Sun, D.-W., & Allen, P. (2013). Prediction of moisture, color and pH in cooked, pre-sliced turkey hams by NIR 

hyperspectral imaging system. Journal of Food Engineering, 117(1), 42–51. 

http://doi.org/10.1016/j.jfoodeng.2013.02.001 

Pu, Y.-Y., Feng, Y.-Z., & Sun, D.-W. (2015). Recent Progress of Hyperspectral Imaging on Quality and Safety 

Inspection of Fruits and Vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, 00, n/a–

n/a. http://doi.org/10.1111/1541-4337.12123 

Pu, Y.-Y., & Sun, D.-W. (2015). Vis–NIR hyperspectral imaging in visualizing moisture distribution of mango slices 

during microwave-vacuum drying. Food Chemistry, 188, 271–278. http://doi.org/10.1016/j.foodchem.2015.04.120 

Rajkumar, P., Wang, N., EImasry, G., Raghavan, G. S. V, & Gariepy, Y. (2012). Studies on banana fruit quality and 

maturity stages using hyperspectral imaging. Journal of Food Engineering, 108(1), 194–200. 

http://doi.org/10.1016/j.jfoodeng.2011.05.002 

Wu, D., Shi, H., Wang, S., He, Y., Bao, Y., & Liu, K. (2012). Rapid prediction of moisture content of dehydrated prawns 

using online hyperspectral imaging system. Analytica Chimica Acta, 726, 57–66. 

http://doi.org/10.1016/j.aca.2012.03.038 

Wu, D., Sun, D. W., & He, Y. (2012). Application of long-wave near infrared hyperspectral imaging for measurement of 

color distribution in salmon fillet. Innovative Food Science and Emerging Technologies, 16, 361–372. 

http://doi.org/10.1016/j.ifset.2012.08.003 

Wu, D., Wang, S., Wang, N., Nie, P., He, Y., Sun, D. W., & Yao, J. (2013). Application of Time Series Hyperspectral 

Imaging (TS-HSI) for Determining Water Distribution Within Beef and Spectral Kinetic Analysis During 

Dehydration. Food and Bioprocess Technology, 6, 2943–2958. http://doi.org/10.1007/s11947-012-0928-0 

 


